已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of a Dynamic Real-Time Risk Prediction Model for Intensive Care Units Patients Based on Longitudinal Irregular Data: Multicenter Retrospective Study

概化理论 可解释性 重症监护 稳健性(进化) 接收机工作特性 过度拟合 计算机科学 数据挖掘 缺少数据 生命体征 机器学习 医学 人工智能 重症监护医学 统计 人工神经网络 外科 生物化学 化学 数学 基因
作者
Zhuo Zheng,Jiawei Luo,Yingchao Zhu,Lei Du,Lan Lan,Xiaobo Zhou,Xiaoyan Yang,Shixin Huang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e69293-e69293
标识
DOI:10.2196/69293
摘要

Background Timely and accurate prediction of short-term mortality is critical in intensive care units (ICUs), where patients’ conditions change rapidly. Traditional scoring systems, such as the Simplified Acute Physiology Score and Acute Physiology and Chronic Health Evaluation, rely on static variables collected within the first 24 hours of admission and do not account for continuously evolving clinical states. These systems lack real-time adaptability, interpretability, and generalizability. With the increasing availability of high-frequency electronic medical record (EMR) data, machine learning (ML) approaches have emerged as powerful tools to model complex temporal patterns and support dynamic clinical decision-making. However, existing models are often limited by their inability to handle irregular sampling and missing values, and many lack rigorous external validation across institutions. Objective We aimed to develop a real-time, interpretable risk prediction model that continuously assesses ICU patient mortality using irregular, longitudinal EMR data, with improved performance and generalizability over traditional static scoring systems. Methods A time-aware bidirectional attention-based long short-term memory (TBAL) model was developed using EMR data from the MIMIC-IV (Medical Information Mart for Intensive Care) and eICU Collaborative Research Database (eICU-CRD) databases, comprising 176,344 ICU stays. The model incorporated dynamic variables, including vital signs, laboratory results, and medication data, updated hourly, to perform static and continuous mortality risk assessments. External cross-validation and subgroup sensitivity analyses were conducted to evaluate robustness and fairness. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), accuracy, and F1-score. Interpretability was enhanced using integrated gradients to identify key predictors. Results For the static 12-hour to 1-day mortality prediction task, the TBAL model achieved AUROCs of 95.9 (95% CI 94.2-97.5) and 93.3 (95% CI 91.5-95.3) and AUPRCs of 48.5 and 21.6 in MIMIC-IV and eICU-CRD, respectively. Accuracy and F1-scores reached 94.1 and 46.7 in MIMIC-IV and 92.2 and 28.1 in eICU-CRD. In dynamic prediction tasks, AUROCs reached 93.6 (95% CI 93.2-93.9) and 91.9 (95% CI 91.6-92.1), with AUPRCs of 41.3 and 50, respectively. The model maintained high recall for positive cases (82.6% and 79.1% in MIMIC-IV and eICU-CRD). Cross-database validation yielded AUROCs of 81.3 and 76.1, confirming generalizability. Subgroup analysis showed stable performance across age, sex, and severity strata, with top predictors including lactate, vasopressor use, and Glasgow Coma Scale score. Conclusions The TBAL model offers a robust, interpretable, and generalizable solution for dynamic real-time mortality risk prediction in ICU patients. Its ability to adapt to irregular temporal patterns and to provide hourly updated predictions positions it as a promising decision-support tool. Future work should validate its utility in prospective clinical trials and investigate its integration into real-world ICU workflows to enhance patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
加油杨完成签到 ,获得积分10
1秒前
wqq发布了新的文献求助10
2秒前
孙煜完成签到,获得积分10
3秒前
wlei完成签到,获得积分10
5秒前
6秒前
LANER完成签到 ,获得积分10
6秒前
7秒前
独指蜗牛完成签到 ,获得积分10
8秒前
肆月完成签到 ,获得积分10
9秒前
WANG.发布了新的文献求助10
10秒前
火星完成签到 ,获得积分10
11秒前
11秒前
SC完成签到,获得积分10
11秒前
12秒前
12秒前
迅速的绿蕊完成签到,获得积分10
12秒前
13秒前
fx完成签到,获得积分10
13秒前
14秒前
MisterHao应助hello采纳,获得10
16秒前
fx发布了新的文献求助10
18秒前
19秒前
城门楼子完成签到,获得积分20
19秒前
Lu完成签到 ,获得积分10
21秒前
城门楼子发布了新的文献求助10
21秒前
科研通AI5应助kaiii采纳,获得10
23秒前
芜湖发布了新的文献求助10
25秒前
闪999完成签到,获得积分10
25秒前
25秒前
Lzoctor完成签到 ,获得积分10
26秒前
GGBoy完成签到 ,获得积分10
26秒前
WANG.完成签到,获得积分10
27秒前
易川完成签到,获得积分10
28秒前
TaoJ应助爱大美采纳,获得10
28秒前
陈欣瑶完成签到 ,获得积分10
29秒前
LBQ发布了新的文献求助10
29秒前
31秒前
jenningseastera应助闪999采纳,获得10
31秒前
lin完成签到,获得积分10
32秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367233
关于积分的说明 10444690
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698028
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848