催化作用
合金
贵金属
材料科学
丙酮
金属
纳米技术
化学工程
化学
冶金
有机化学
工程类
作者
Ou Wang,Zhiheng Ma,Zhenggang Xue,Muyu Yan,Bao-Li An,Yongmei Zhao,Jiaqiang Xu,Xiaohong Wang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-03-27
标识
DOI:10.1021/acsnano.5c00940
摘要
Enhancing the gas-sensing properties of metal oxide semiconductors using noble metals' electronic and chemical sensitization functions is a common approach to develop high-performance gas sensors. However, the high cost and scarcity of noble metals pose challenges to sustainability. In this study, a non-noble metal MnFeCoNiCu high-entropy alloy (HEA) was designed as an alternative to noble metals to enhance the sensitivity of SnO2 and enable efficient, stable, and rapid detection of acetone (C3H6O). The MnFeCoNiCu HEA-loaded SnO2 demonstrated improved performance in C3H6O detection, including high selectivity (κ > 3), a high sensitivity (Ra/Rg = 4.17 at 0.5 ppm), a low detection limit (30 ppb), fast response and recovery time (4.6 s/5 s), long-term stability (over 50 days), and resistance to humidity (stable at 90% RH). The enhanced performance of the HEA is attributed to the fact that it possesses more valence electrons and the electrons can transfer and redistribute among different atoms, which leads to an increase in active oxygen species and catalytic sites, promoting electron sensitization. This study provides insights into designing and developing a highly catalytic, non-noble metal HEA for gas-sensing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI