Bayesian penalized empirical likelihood and Markov Chain Monte Carlo sampling

马尔科夫蒙特卡洛 贝叶斯概率 计量经济学 蒙特卡罗方法 吉布斯抽样 马尔可夫链 统计 采样(信号处理) 计算机科学 数学 计算机视觉 滤波器(信号处理)
作者
Jinyuan Chang,Cheng Yong Tang,Yuanzheng Zhu
出处
期刊:Journal of The Royal Statistical Society Series B-statistical Methodology [Oxford University Press]
标识
DOI:10.1093/jrsssb/qkaf009
摘要

Abstract In this study, we introduce a novel methodological framework called Bayesian penalized empirical likelihood (BPEL), designed to address the computational challenges inherent in empirical likelihood (EL) approaches. Our approach has two primary objectives: (i) to enhance the inherent flexibility of EL in accommodating diverse model conditions, and (ii) to facilitate the use of well-established Markov Chain Monte Carlo sampling schemes as a convenient alternative to the complex optimization typically required for statistical inference using EL. To achieve the first objective, we propose a penalized approach that regularizes the Lagrange multipliers, significantly reducing the dimensionality of the problem while accommodating a comprehensive set of model conditions. For the second objective, our study designs and thoroughly investigates two popular sampling schemes within the BPEL context. We demonstrate that the BPEL framework is highly flexible and efficient, enhancing the adaptability and practicality of EL methods. Our study highlights the practical advantages of using sampling techniques over traditional optimization methods for EL problems, showing rapid convergence to the global optima of posterior distributions and ensuring the effective resolution of complex statistical inference challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
视野胤发布了新的文献求助10
刚刚
ws123发布了新的文献求助10
1秒前
大眼睛的草莓完成签到,获得积分10
2秒前
杰青完成签到,获得积分20
2秒前
我是老大应助土豆金采纳,获得10
3秒前
Orange应助思敏采纳,获得10
3秒前
独特的土豆完成签到,获得积分10
3秒前
3秒前
我是老大应助登山人采纳,获得10
4秒前
桐桐应助zuoyingying采纳,获得10
4秒前
wxq关闭了wxq文献求助
4秒前
6秒前
6秒前
7秒前
0514gr完成签到,获得积分10
7秒前
xixixi发布了新的文献求助10
9秒前
张三发布了新的文献求助10
9秒前
山淮发布了新的文献求助10
10秒前
amwlsai完成签到,获得积分10
10秒前
Bgeelyu发布了新的文献求助10
11秒前
Lp完成签到 ,获得积分10
11秒前
14秒前
15秒前
MY完成签到,获得积分10
16秒前
cc0514gr完成签到,获得积分10
17秒前
18秒前
jeff完成签到,获得积分10
18秒前
19秒前
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
赖向珊应助科研通管家采纳,获得50
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
20秒前
20秒前
丘比特应助张三采纳,获得10
20秒前
土豆金发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732