材料科学
电解质
电极
硅
硫化物
复合数
化学工程
相间
电池(电)
纳米技术
光电子学
复合材料
冶金
化学
生物
物理
工程类
物理化学
功率(物理)
量子力学
遗传学
作者
Chanho Kim,Yuanshun Li,Inyoung Jang,Wenda Wu,Yi‐Feng Su,Harry M. Meyer,Jong K. Keum,Jagjit Nanda,Guang Yang
标识
DOI:10.1002/adma.202502300
摘要
Abstract For the first time, we demonstrate a silicon solid‐state battery (SSB) architecture that achieves >400 Wh kg −1 , approaching the theoretical limit for silicon‐based SSBs. This configuration features a 99.9 wt% micro‐Si, a thin sulfide solid electrolyte (SSE), and a high‐loading NMC811. Key to these results is strategically selecting and evaluating the processing techniques, whether wet or dry, for the negative electrode, positive electrode and thin sheet‐type SSE. Excessive lithium incorporation into the silicon host, beyond the Li 3.75 +Si phase to form a LiSi composite, is essential to match the high capacity of the positive electrode. This SSB achieves over 1000 cycles for a 2 mAh cm −2 with ≈80% capacity retention and 94% capacity retention for 3 mAh cm −2 over 500 cycles at 25 °C. Post analysis identifies the primary capacity decay mechanisms as oxidation at the NMC/SSE interface and structural disruptions within NMC. Meanwhile, the Si electrode maintains a robust solid‐electrolyte interphase layer, minimizing capacity decay. This study highlights the necessity for improved NMC coatings, lattice oxygen stabilization, and a durable positive electrode‐electrolyte interface to improve the long‐term stability of SSBs. Strategies leading to a single‐layer pouch cell SSB exceeding 400 Wh kg −1 are developed.
科研通智能强力驱动
Strongly Powered by AbleSci AI