清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study

机器学习 人工智能 随机森林 决策树 支持向量机 医学 败血症 逻辑回归 多层感知器 梯度升压 重症监护室 计算机科学 急诊医学 重症监护医学 人工神经网络 内科学
作者
Jingchao Lei,Jia Zhai,Yao Zhang,Jing Qi,Chuanzheng Sun
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e66733-e66733
标识
DOI:10.2196/66733
摘要

Background Sepsis-associated liver injury (SALI) is a severe complication of sepsis that contributes to increased mortality and morbidity. Early identification of SALI can improve patient outcomes; however, sepsis heterogeneity makes timely diagnosis challenging. Traditional diagnostic tools are often limited, and machine learning techniques offer promising solutions for predicting adverse outcomes in patients with sepsis. Objective This study aims to develop an explainable machine learning model, incorporating stacking techniques, to predict the occurrence of liver injury in patients with sepsis and provide decision support for early intervention and personalized treatment strategies. Methods This retrospective multicenter cohort study adhered to the TRIPOD+AI (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis, Extended for Artificial Intelligence) guidelines. Data from 8834 patients with sepsis in the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used for training and internal validation, while data from 4236 patients in the eICU-Collaborative Research Database (eICU-CRD) database were used for external validation. SALI was defined as an international normalized ratio >1.5 and total bilirubin >2 mg/dL within 1 week of intensive care unit admission. Nine machine learning models—decision tree, random forest (RF), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), support vector machine, elastic net, logistic regression, multilayer perceptron, and k-nearest neighbors—were trained. A stacking ensemble model, using LightGBM, XGBoost, and RF as base learners and Lasso regression as the meta-model, was optimized via 10-fold cross-validation. Hyperparameters were tuned using grid search and Bayesian optimization. Model performance was evaluated using accuracy, balanced accuracy, Brier score, detection prevalence, F1-score, Jaccard index, κ coefficient, Matthews correlation coefficient, negative predictive value, positive predictive value, precision, recall, area under the receiver operating characteristic curve (ROC-AUC), precision-recall AUC, and decision curve analysis. Shapley additive explanations (SHAP) values were used to quantify feature importance. Results In the training set, LightGBM, XGBoost, and RF demonstrated the best performance among all models, with ROC-AUCs of 0.9977, 0.9311, and 0.9847, respectively. These models exhibited minimal variance in cross-validation, with tightly clustered ROC-AUC and precision-recall area under the curve distributions. In the internal validation set, LightGBM (ROC-AUC 0.8401) and XGBoost (ROC-AUC 0.8403) outperformed all other models, while RF achieved an ROC-AUC of 0.8193. In the external validation set, LightGBM (ROC-AUC 0.7077), XGBoost (ROC-AUC 0.7169), and RF (ROC-AUC 0.7081) maintained strong performance, although with slight decreases in ROC-AUC compared with the training set. The stacking model achieved ROC-AUCs of 0.995, 0.838, and 0.721 in the training, internal validation, and external validation sets, respectively. Key predictors—total bilirubin, lactate, prothrombin time, and mechanical ventilation status—were consistently identified across models, with SHAP analysis highlighting their significant contributions to the model’s predictions. Conclusions The stacking ensemble model developed in this study yields accurate and robust predictions of SALI in patients with sepsis, demonstrating potential clinical utility for early intervention and personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子应助科研通管家采纳,获得10
5秒前
鬼见愁应助科研通管家采纳,获得10
5秒前
5秒前
orixero应助DSH采纳,获得10
10秒前
24秒前
woxinyouyou完成签到,获得积分0
24秒前
量子星尘发布了新的文献求助10
31秒前
波西米亚完成签到,获得积分10
31秒前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
鬼见愁应助科研通管家采纳,获得10
2分钟前
鬼见愁应助科研通管家采纳,获得10
2分钟前
鬼见愁应助科研通管家采纳,获得10
2分钟前
松松完成签到 ,获得积分10
2分钟前
MGraceLi_sci完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
糟糕的翅膀完成签到,获得积分10
3分钟前
3分钟前
Akim应助悄悄采纳,获得10
3分钟前
KSDalton完成签到,获得积分10
3分钟前
4分钟前
鬼见愁应助科研通管家采纳,获得10
4分钟前
鬼见愁应助科研通管家采纳,获得10
4分钟前
悄悄发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
5分钟前
Owen应助坚强的云朵采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
鬼见愁应助科研通管家采纳,获得10
6分钟前
鬼见愁应助科研通管家采纳,获得10
6分钟前
6分钟前
婼汐完成签到 ,获得积分10
6分钟前
顺利的小蚂蚁完成签到,获得积分10
6分钟前
漂亮夏兰完成签到 ,获得积分10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4222832
求助须知:如何正确求助?哪些是违规求助? 3755955
关于积分的说明 11806889
捐赠科研通 3418840
什么是DOI,文献DOI怎么找? 1876381
邀请新用户注册赠送积分活动 929991
科研通“疑难数据库(出版商)”最低求助积分说明 838341