Fabricating ultra-robust hydrogels with adhesive properties by restraining crack propagation with bamboo cellulose-based carbon nanomaterials

竹子 胶粘剂 纤维素 纳米材料 材料科学 自愈水凝胶 复合材料 纳米技术 化学工程 高分子化学 工程类 图层(电子)
作者
Xin Duan,Huanxin Huo,Hongshan Li,Yihong Gao,Haoran Shi,Feng Kuang,Yumeng Chen,Jianyong Wan,Jingjie Shen,Guanben Du,Long Yang
出处
期刊:Journal of bioresources and bioproducts [Elsevier]
卷期号:10 (3): 360-372 被引量:2
标识
DOI:10.1016/j.jobab.2025.05.002
摘要

The bamboo fiber functionalized with phthalic anhydride underwent carbonization, yielding bamboo cellulose-derived carbon nanomaterials (C-BCN). These C-BCN were subsequently integrated into an acrylamide precursor solution to synthesize an ultra-robust, fatigue-resistant conductive hydrogel (PAM-C-BCN). During in situ polymerization, the abundant active sites on the C-BCN surface facilitated covalent cross-linking with the polyacrylamide (PAM) matrix. This interfacial interaction promoted strong adhesion between the PAM chains and the carbon nanostructures, forming a densely interpenetrated network through macromolecular entanglement. The synergistic coupling of the rigid C-BCN framework with the flexible polymer chains conferred exceptional mechanical resilience and energy dissipation capabilities to the composite hydrogel. Compared to the PAM hydrogel, the PAM-C-BCN hydrogel exhibited an improvement in mechanical properties, with a fracture strength of 363 kPa (a 2.5% increase), an elongation of approximately 2 254% (a 2.0% increase), a fracture energy of 30 kJ/m2 (a 3.1% increase), and a toughness of 3.04 MJ/m3 (a 4.1% increase). Moreover, PAM-C-BCN hydrogel demonstrated high adhesion (up to 7.5 kPa on pigskin) and conductivity (0.21 S/m). This strategy required neither complex design nor processing, offering a simple and efficient approach with great potential for hydrogel applications requiring high mechanical performance. At the crack tip of PAM-C-BCN hydrogel, C-BCN exhibited superior crack propagation resistance compared to SiO2 nanoparticles. Importantly, this strategy offered valuable insights for developing tough and stretchable hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MAKESIME发布了新的文献求助10
1秒前
星辰大海应助韩豆乐采纳,获得10
1秒前
2秒前
3秒前
桃桃奶盖发布了新的文献求助10
4秒前
666发布了新的文献求助10
5秒前
Mr_I发布了新的文献求助10
6秒前
8秒前
小鱼儿发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
bkagyin应助冷傲天川采纳,获得10
10秒前
11秒前
万能图书馆应助Sichen孟采纳,获得10
12秒前
韩豆乐发布了新的文献求助10
12秒前
zy完成签到 ,获得积分10
13秒前
科目三应助lin采纳,获得10
14秒前
ww发布了新的文献求助10
15秒前
15秒前
666完成签到,获得积分10
16秒前
16秒前
17秒前
奋斗不二完成签到,获得积分10
18秒前
桐桐应助子乔采纳,获得10
20秒前
可爱的函函应助liuyaohan0726采纳,获得10
22秒前
Gin发布了新的文献求助10
23秒前
23秒前
23秒前
maner应助zy采纳,获得10
23秒前
24秒前
24秒前
25秒前
Hello应助科研民工李采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
春夏秋冬发布了新的文献求助10
29秒前
29秒前
mengluoluo完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助50
30秒前
幸福路人完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799210
求助须知:如何正确求助?哪些是违规求助? 5797905
关于积分的说明 15499412
捐赠科研通 4925707
什么是DOI,文献DOI怎么找? 2651584
邀请新用户注册赠送积分活动 1598638
关于科研通互助平台的介绍 1553545