已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of portable soil organic matter system based image and spectral fusion

图像融合 有机质 图像(数学) 融合 环境科学 计算机科学 土壤科学 计算机视觉 化学 语言学 哲学 有机化学
作者
Chaoyang Wang,Wei Yang,Yu Bai,Yamei Song,Minzan Li,Hong Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/add75c
摘要

Abstract Soil organic matter (SOM) content is an important indicator of agricultural soil fertility. A portable detection device was designed by combining near-infrared (NIR) spectroscopy with soil image information technology to rapidly and accurately determine the SOM content. The system extracts the RGB color histogram from pre-processing soil images, such as image cropping and overexposure removal, to improve the validity of image data. Subsequently, the color histogram information is fused with near-infrared spectral data. Meanwhile, a self-attention generative adversarial network (SA-GAN) is proposed to expand SOM fusion data, addressing the challenge of limited soil sample availability for deep learning. 120 soil samples and their corresponding NIR data, image data, and true values of organic matter were collected from the North China Plain, China. Three models, namely, Support Vector Machine (SVM), Partial Least Squares Regression (PLSR), and Convolutional Neural Network (CNN) were used for SOM content prediction. The experimental results show that after data fusion and expansion, the R² values of SVM, PLSR, and CNN models improved from 0.59, 0.55, and 0.60 to 0.73, 0.76, and 0.88, respectively. Concurrently, the RMSEs decreased from 7.84, 8.11, and 5.65 to 3.60, 3.21, and 2.08, indicating higher predictive accuracy across all models. In addition, the portable device integrated with the prediction model was validated in the field, achieving R² of 0.80. It is proven that the system can effectively detect the SOM content in real-time, which provides important technical support and a reference basis for guiding smart agricultural production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逍遥子0211完成签到,获得积分10
刚刚
mathmotive完成签到,获得积分10
1秒前
研友_VZG7GZ应助kento采纳,获得30
1秒前
芒芒发paper完成签到 ,获得积分10
2秒前
RMgX完成签到,获得积分10
2秒前
风中黎昕完成签到 ,获得积分10
2秒前
复方黄桃干完成签到 ,获得积分10
3秒前
3秒前
fys131415完成签到 ,获得积分10
3秒前
PAIDAXXXX完成签到,获得积分10
4秒前
大模型应助文静涵梅采纳,获得10
5秒前
WAO完成签到,获得积分10
5秒前
guojinyu发布了新的文献求助10
5秒前
ypyue完成签到,获得积分10
5秒前
充电宝应助Felix采纳,获得10
5秒前
玩一完成签到,获得积分10
6秒前
魁梧的衫完成签到 ,获得积分10
8秒前
9秒前
Mark_He发布了新的文献求助10
10秒前
11秒前
灵巧大地完成签到,获得积分10
11秒前
阿浩科研顺利完成签到 ,获得积分10
12秒前
13秒前
cxx完成签到 ,获得积分10
14秒前
呜呼呼发布了新的文献求助10
15秒前
马某完成签到 ,获得积分10
15秒前
长发飘飘完成签到 ,获得积分10
15秒前
七七完成签到,获得积分10
15秒前
敞敞亮亮完成签到 ,获得积分10
16秒前
良月完成签到 ,获得积分10
16秒前
嘉雯完成签到 ,获得积分10
16秒前
CipherSage应助木子剑光军采纳,获得10
17秒前
悦耳的蓉完成签到,获得积分10
17秒前
李健完成签到 ,获得积分10
18秒前
赵文龙发布了新的文献求助10
18秒前
Yasong完成签到 ,获得积分10
19秒前
darqin完成签到,获得积分10
19秒前
都找到了完成签到,获得积分10
20秒前
斯文梦寒完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4497096
求助须知:如何正确求助?哪些是违规求助? 3948932
关于积分的说明 12243387
捐赠科研通 3606667
什么是DOI,文献DOI怎么找? 1984068
邀请新用户注册赠送积分活动 1020487
科研通“疑难数据库(出版商)”最低求助积分说明 912909