Development of portable soil organic matter system based image and spectral fusion

图像融合 有机质 图像(数学) 融合 环境科学 计算机科学 土壤科学 计算机视觉 化学 语言学 哲学 有机化学
作者
Chaoyang Wang,Wei Yang,Yu Bai,Yamei Song,Minzan Li,Hong Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/add75c
摘要

Abstract Soil organic matter (SOM) content is an important indicator of agricultural soil fertility. A portable detection device was designed by combining near-infrared (NIR) spectroscopy with soil image information technology to rapidly and accurately determine the SOM content. The system extracts the RGB color histogram from pre-processing soil images, such as image cropping and overexposure removal, to improve the validity of image data. Subsequently, the color histogram information is fused with near-infrared spectral data. Meanwhile, a self-attention generative adversarial network (SA-GAN) is proposed to expand SOM fusion data, addressing the challenge of limited soil sample availability for deep learning. 120 soil samples and their corresponding NIR data, image data, and true values of organic matter were collected from the North China Plain, China. Three models, namely, Support Vector Machine (SVM), Partial Least Squares Regression (PLSR), and Convolutional Neural Network (CNN) were used for SOM content prediction. The experimental results show that after data fusion and expansion, the R² values of SVM, PLSR, and CNN models improved from 0.59, 0.55, and 0.60 to 0.73, 0.76, and 0.88, respectively. Concurrently, the RMSEs decreased from 7.84, 8.11, and 5.65 to 3.60, 3.21, and 2.08, indicating higher predictive accuracy across all models. In addition, the portable device integrated with the prediction model was validated in the field, achieving R² of 0.80. It is proven that the system can effectively detect the SOM content in real-time, which provides important technical support and a reference basis for guiding smart agricultural production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GeminiWU发布了新的文献求助10
1秒前
畅快海云完成签到 ,获得积分10
1秒前
烟花应助天天采纳,获得30
1秒前
香蕉觅云应助天天采纳,获得10
1秒前
科目三应助天天采纳,获得10
1秒前
可爱的函函应助天天采纳,获得10
1秒前
科目三应助天天采纳,获得10
1秒前
科研通AI5应助天天采纳,获得10
1秒前
bkagyin应助天天采纳,获得10
1秒前
希望天下0贩的0应助天天采纳,获得10
1秒前
大盘鸡发布了新的文献求助20
2秒前
3秒前
4秒前
4秒前
5秒前
5秒前
WXY完成签到 ,获得积分10
6秒前
6秒前
ding应助怡然颦采纳,获得10
6秒前
6秒前
6秒前
7秒前
高子懿完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
花露水发布了新的文献求助10
8秒前
9秒前
调皮的秋柔完成签到,获得积分10
9秒前
经又夏发布了新的文献求助10
9秒前
完美世界应助瓜酱酱采纳,获得10
9秒前
10秒前
ZO发布了新的文献求助10
10秒前
可爱的函函应助xhtw采纳,获得10
11秒前
xx完成签到,获得积分10
11秒前
11发布了新的文献求助10
11秒前
ssswww完成签到,获得积分10
12秒前
魏头头完成签到 ,获得积分10
13秒前
老迟到的若魔完成签到,获得积分10
13秒前
14秒前
深情安青应助怡然的忆山采纳,获得30
14秒前
乐乐应助125采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206