已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Abstract 3660: Machine learning-based combination prediction for Wee1 inhibitor

第1周 计算机科学 机器学习 人工智能 医学 内科学 癌症 细胞周期 细胞周期蛋白依赖激酶1
作者
Tianduanyi Wang,Juho Rousu,Lin Tang
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (8_Supplement_1): 3660-3660
标识
DOI:10.1158/1538-7445.am2025-3660
摘要

Abstract Motivation: Wee1 is the gatekeeper gene that allows proper DNA damage repair (DDR) during the G2/M cell cycle transition. Inhibiting the Wee1 gene will abrogate the DDR mechanism and lead cancer cells with high replication stress to premature catastrophic mitosis and eventually apoptosis. Several Wee1 inhibitors (Wee1i) are under active development in both preclinical and clinical studies. They have shown efficacy in multiple cancer types as monotherapy or as a combination with chemotherapies or targeted therapies. These studies suggest that a broader combination potential for Wee1i should be explored. Machine learning-based methods are promising and efficient approaches to model drug combination in a broader combination space. Here we have integrated two large combination studies and applied a tensor reconstruction based polynomial regression (comboLTR) method to predict the combination effects for Wee1i in expanded combinations. This work supports a machine learning approach in generating novel combination hypotheses in an expanded space from existing experimental data. Method: Two large published screening studies containing the Wee1i were normalized and integrated. This resulted in a combined screening study of 131 drugs and 53 cell line models. ComboLTR was applied to train drug combination response prediction models using collected known drug combination responses, drug molecular fingerprints, and model genomic features. The model performance was evaluated under different prediction scenarios, including the prediction of missing entries in a dose-response matrix and the prediction of entire dose-response matrices in new cell lines or with unknown drugs. The hyper-parameters were tuned separately for different prediction scenarios to reach the best performance. Three different synergy scores (HSA, Bliss, Loewe) were used to summarize the synergy effects of the predicted drug combinations. The average of the synergy scores was used to evaluate the combination partners for Wee1i. Results: We integrated drug combination response data from two publications and trained LTR models based on the data. In 5-fold cross-validations for the different prediction scenarios, new entry, new matrix, new drug combo, the model achieved a Pearson correlation of above 0.8 between predicted and measured response data. The final model was trained to predict responses of drug combinations between Wee1i and 130 other drugs in 53 cell lines. Based on these predictions, we calculated synergy scores for each drug combination and cell line triplet and ranked the synergy effect within each cancer type. Several compounds reported to be synergistic with Wee1i in selected cancer types were reproduced in the prediction, including dasatinib in ovarian cancer, SN38 in breast cancer, and CHK1i in ovarian cancer. The model also predicted these compounds as having synergistic effects with Wee1i in potential new cancer types which may be of future interest. Citation Format: Tianduanyi Wang, Juho Rousu, Lin Tang. Machine learning-based combination prediction for Wee1 inhibitor [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2025; Part 1 (Regular Abstracts); 2025 Apr 25-30; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2025;85(8_Suppl_1):Abstract nr 3660.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
脑洞疼应助小远采纳,获得10
3秒前
4秒前
Dylan发布了新的文献求助10
5秒前
bkagyin应助小赵采纳,获得10
7秒前
z7777777发布了新的文献求助10
9秒前
聪慧芷巧发布了新的文献求助10
9秒前
PAD完成签到,获得积分10
10秒前
干净溪流发布了新的文献求助50
14秒前
西瓜完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
z7777777完成签到,获得积分10
16秒前
小赵发布了新的文献求助10
18秒前
20秒前
小远发布了新的文献求助10
20秒前
曹梦梦发布了新的文献求助10
20秒前
Dylan完成签到 ,获得积分10
24秒前
与山发布了新的文献求助10
25秒前
迷路的夏之完成签到,获得积分10
25秒前
25秒前
26秒前
曹梦梦完成签到,获得积分10
28秒前
解语花发布了新的文献求助30
29秒前
聪慧芷巧完成签到,获得积分10
29秒前
斯文的葶发布了新的文献求助10
30秒前
正直夜安完成签到 ,获得积分10
31秒前
chenxiaobei完成签到,获得积分20
32秒前
科研通AI2S应助木木杉采纳,获得10
33秒前
枫于林完成签到 ,获得积分10
34秒前
解语花完成签到,获得积分10
36秒前
小新小新完成签到 ,获得积分10
36秒前
单薄松鼠完成签到 ,获得积分10
37秒前
zhzssaijj完成签到,获得积分10
41秒前
DarwinZC发布了新的文献求助10
43秒前
orange发布了新的文献求助10
44秒前
JohnsonTse完成签到,获得积分10
45秒前
JamesPei应助斯文墨镜采纳,获得10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959964
求助须知:如何正确求助?哪些是违规求助? 3506202
关于积分的说明 11128397
捐赠科研通 3238196
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042