CTA-based deep-learning integrated model for identifying irregular shape and aneurysm size of unruptured intracranial aneurysms

医学 动脉瘤 放射科 人工智能 计算机科学
作者
Ke Tian,Chang Zhao,Yi Yang,Peng Liu,Mahmud Mossa‐Basha,Michael R. Levitt,Di‐Hua Zhai,Danyang Liu,Zhengwei Li,Yan Liu,Jinhao Zhang,Chao Cao,Chengcheng Zhu,Peng Jiang,Qingyuan Liu,Hongwei He,Yuanqing Xia
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-2024 被引量:1
标识
DOI:10.1136/jnis-2024-022784
摘要

Background Artificial intelligence can help to identify irregular shapes and sizes, crucial for managing unruptured intracranial aneurysms (UIAs). However, existing artificial intelligence tools lack reliable classification of UIA shape irregularity and validation against gold-standard three-dimensional rotational angiography (3DRA). This study aimed to develop and validate a deep-learning model using computed tomography angiography (CTA) for classifying irregular shapes and measuring UIA size. Methods CTA and 3DRA of UIA patients from a referral hospital were included as a derivation set, with images from multiple medical centers as an external test set. Senior investigators manually measured irregular shape and aneurysm size on 3DRA as the ground truth. Convolutional neural network (CNN) models were employed to develop the CTA-based model for irregular shape classification and size measurement. Model performance for UIA size and irregular shape classification was evaluated by intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Junior clinicians’ performance in irregular shape classification was compared before and after using the model. Results The derivation set included CTA images from 307 patients with 365 UIAs. The test set included 305 patients with 350 UIAs. The AUC for irregular shape classification of this model in the test set was 0.87, and the ICC of aneurysm size measurement was 0.92, compared with 3DRA. With the model’s help, junior clinicians’ performance for irregular shape classification was significantly improved (AUC 0.86 before vs 0.97 after, P<0.001). Conclusion This study provided a deep-learning model based on CTA for irregular shape classification and size measurement of UIAs with high accuracy and external validity. The model can be used to improve reader performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助www采纳,获得10
刚刚
彭于晏应助谢大喵采纳,获得10
刚刚
1秒前
李梦月发布了新的文献求助10
2秒前
zhonglv7应助Fairy采纳,获得10
2秒前
3秒前
3秒前
3秒前
11223发布了新的文献求助10
4秒前
奇奇怪怪的大鱼完成签到,获得积分10
4秒前
4秒前
Ava应助111采纳,获得10
4秒前
4秒前
泡沫经济完成签到,获得积分10
4秒前
善学以致用应助蓝月半采纳,获得10
5秒前
dfggb发布了新的文献求助10
5秒前
药学完成签到 ,获得积分10
5秒前
6秒前
正直的博完成签到,获得积分10
7秒前
香蕉觅云应助谢大喵采纳,获得10
7秒前
7秒前
CipherSage应助陶醉凝丝采纳,获得10
7秒前
jiwang发布了新的文献求助10
8秒前
9秒前
陈铭完成签到,获得积分10
9秒前
1900发布了新的文献求助10
9秒前
沉默发布了新的文献求助10
9秒前
正直的博发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
出厂价完成签到,获得积分10
10秒前
热心青易发布了新的文献求助10
10秒前
Hhh发布了新的文献求助10
10秒前
椿·完成签到,获得积分10
11秒前
11秒前
今后应助dfggb采纳,获得10
11秒前
12秒前
12秒前
13秒前
aaa啊啊啊发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675794
求助须知:如何正确求助?哪些是违规求助? 4949173
关于积分的说明 15154796
捐赠科研通 4835088
什么是DOI,文献DOI怎么找? 2589854
邀请新用户注册赠送积分活动 1543583
关于科研通互助平台的介绍 1501336