Multiomics Data Integration of Lipid Metabolism in Hepatocellular Carcinoma Studies Using Bioinformatics Networks Based on Vertical and Horizontal Comparisons

肝细胞癌 脂质代谢 计算生物学 生物信息学 计算机科学 生物 生物化学 癌症研究
作者
Xin Huang,Mengjun Li,Yang Zhou,Xinyu He
标识
DOI:10.1109/tcbbio.2025.3558760
摘要

Exploring changes in lipid metabolism is helpful for providing unique insight into hepatocellular carcinoma (HCC) pathogenesis mechanisms and early hepatocarcinogenesis. However, lipid metabolism involves different omics molecular interactions by means of both linear and nonlinear forms. Thus, we proposed a novel network construction method based on molecular pair evaluation from linear and nonlinear viewpoints (PELN) for clinical studies. In PELN, molecular relationships were explored in depth by horizontal comparison (linear relationship) and vertical comparison (nonlinear relationship) to reflect disease development for biomarker discovery. In the score calculated by PELN, case ratios and case frequencies were used to comprehensively measure the discriminative ability of the molecular pairs, which can reduce the influence of sampling variability resulting from different subjects. HCC genomics and metabolomics datasets related to lipid metabolism were analyzed by PELN, and the selected network warning signals were shown to effectively predict cancer onset. The experimental results showed that compared with other network methods, including DMNC, DNB-HC, ATSD-DN and MN-PCC, PELN was more robust and precise for distinguishing HCC samples from non-HCC samples. Further analysis using statistical methods demonstrated that studying changes in lipid metabolism using PELN based on multiomics data can help to further understand the pathological mechanisms associated with HCC development, contributing to early diagnosis and affecting clinical prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助NO0809采纳,获得10
刚刚
XIN完成签到,获得积分20
刚刚
可爱的函函应助Deyong采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
3秒前
Lemon应助科研通管家采纳,获得15
3秒前
3秒前
3秒前
XIN发布了新的文献求助10
3秒前
过时的芝麻完成签到,获得积分10
4秒前
6秒前
9秒前
10秒前
下课闹闹发布了新的文献求助10
10秒前
LaTeXer给浮生的求助进行了留言
11秒前
11秒前
13秒前
NO0809发布了新的文献求助10
13秒前
14秒前
青青完成签到,获得积分20
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
Arya发布了新的文献求助10
16秒前
延胡索完成签到,获得积分10
16秒前
顺利面包发布了新的文献求助10
17秒前
段段砖完成签到,获得积分10
17秒前
俺村俺最牛完成签到,获得积分10
17秒前
111发布了新的文献求助10
18秒前
荣耀完成签到,获得积分20
18秒前
18秒前
青青发布了新的文献求助10
19秒前
氧气橘子完成签到,获得积分10
20秒前
20秒前
20秒前
玉yu完成签到 ,获得积分10
23秒前
伶俐芙发布了新的文献求助10
24秒前
氧气橘子发布了新的文献求助10
25秒前
研友_VZG7GZ应助junfeiwang采纳,获得10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231299
求助须知:如何正确求助?哪些是违规求助? 3764763
关于积分的说明 11829720
捐赠科研通 3423805
什么是DOI,文献DOI怎么找? 1878934
邀请新用户注册赠送积分活动 931858
科研通“疑难数据库(出版商)”最低求助积分说明 839414