Development and Validation of Machine Learning‐Based Marker for Early Detection and Prognosis Stratification of Nonalcoholic Fatty Liver Disease

非酒精性脂肪肝 生命银行 内科学 医学 疾病 危险分层 肝病 不利影响 代谢综合征 生物信息学 机器学习 脂肪肝 肿瘤科 生物 计算机科学 肥胖
作者
Lushan Xiao,Lin Zeng,Jiaren Wang,Chang Hong,Ziyong Zhang,Chengkai Wu,Hao Cui,Zhiyong Li,Ruining Li,Shengxing Liang,Qijie Deng,Wenyuan Li,Xuejing Zou,Peng‐Cheng Ma,Li Liu
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202410527
摘要

Abstract Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease and is considered the hepatic manifestation of metabolic syndrome, triggering out adverse outcomes. A stacked multimodal machine learning model is constructed and validated for early identification and prognosis stratification of NAFLD by integrating genetic and clinical data sourced from 36 490 UK Biobank and 9 007 Nanfang Hospital participants and extracted its probabilities as in‐silico scores for NAFLD (ISNLD). The efficacy of ISNLD is evaluated for the early prediction of severe liver disease (SeLD) and analyzed its association with metabolism‐related outcomes. The multimodal model performs satisfactorily in classifying individuals into low‐ and high‐risk groups for NAFLD, achieving area under curves (AUCs) of 0.843, 0.840, and 0.872 within training, internal, and external test sets, respectively. Among high‐risk group, ISNLD is significantly associated with intrahepatic and metabolism‐related complications after lifestyle factors adjustment. Further, ISNLD demonstrates notable capability for early prediction of SeLD and further stratifies high‐risk subjects into three risk subgroups of elevated risk for adverse outcomes. The findings emphasize the model's ability to integrate multimodal features to generate ISNLD, enabling early detection and prognostic prediction of NAFLD. This facilitates personalized stratification for NAFLD and metabolism‐related outcomes based on digital non‐invasive markers, enabling preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
飘逸的翼发布了新的文献求助10
3秒前
3秒前
3秒前
Ljh发布了新的文献求助20
4秒前
龙龙ff11_发布了新的文献求助10
4秒前
Slhy完成签到 ,获得积分10
5秒前
5秒前
5秒前
pineapple发布了新的文献求助10
6秒前
饭神仙鱼完成签到,获得积分10
6秒前
单薄遥完成签到,获得积分10
6秒前
6秒前
充电宝应助淡淡的新之采纳,获得10
7秒前
8秒前
Orange应助飘逸的翼采纳,获得10
8秒前
深情安青应助rek采纳,获得10
8秒前
泡爷小帅发布了新的文献求助10
8秒前
Watsun发布了新的文献求助10
9秒前
单薄遥发布了新的文献求助10
10秒前
陈宇蛟完成签到,获得积分10
11秒前
个性的紫菜应助戏子采纳,获得10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
氧气橘子完成签到,获得积分10
13秒前
Jasper应助香菜碗里来采纳,获得10
14秒前
14秒前
15秒前
阿婆家的傻小子完成签到,获得积分10
17秒前
陈chq发布了新的文献求助10
18秒前
xuxiaoyan完成签到,获得积分10
18秒前
王泽坤发布了新的文献求助10
18秒前
20秒前
李小木发布了新的文献求助10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
The Search for American Political Development 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247929
求助须知:如何正确求助?哪些是违规求助? 3780885
关于积分的说明 11870969
捐赠科研通 3433938
什么是DOI,文献DOI怎么找? 1884721
邀请新用户注册赠送积分活动 936306
科研通“疑难数据库(出版商)”最低求助积分说明 842199