Dose the deep learning-based iterative reconstruction affect the measuring accuracy of bone mineral density in low dose chest CT?

成像体模 图像质量 威尔科克森符号秩检验 医学 核医学 迭代重建 图像噪声 骨矿物 噪音(视频) 信噪比(成像) 数学 曼惠特尼U检验 骨质疏松症 计算机科学 放射科 人工智能 图像(数学) 统计 内科学
作者
Hui Hao,Jianbo Tong,Shijie Xu,Jingyi Wang,Ningning Ding,Zhe Liu,Wenzhe Zhao,Xin Huang,Yanshou Li,Chao Jin,Jian Yang
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1093/bjr/tqaf059
摘要

Abstract Objectives To investigate the impacts of a deep learning-based iterative reconstruction algorithm on image quality and measuring accuracy of bone mineral density (BMD) in low dose chest CT. Methods Phantom and patient studies were separately conducted in this study. The same low dose protocol was used for phantoms and patients. All images were reconstructed with filter back projection, hybrid iterative reconstruction (KARL, level of 3,5,7), and deep learning-based iterative reconstruction (AIIR, low, medium and high-strength). The noise power spectrum (NPS) and the task-based transfer function (TTF) were evaluated using phantom. The accuracy and the relative error (RE) of BMD were evaluated using a European spine phantom. The subjective evaluation was performed by two experienced radiologists. BMD was measured using QCT. Image noise, signal-to-noise ratio, contrast-to-noise ratio, BMD values and subjective scores were compared with Wilcoxon signed-rank test. The Cohen's kappa test was used to evaluate the inter-reader and inter-group agreement. Results AIIR reduced noise and improved resolution in phantom images significantly. There were no significant differences among BMD values in all groups of images (all p > 0.05). RE of BMD measured with AIIR images were smaller. In objective evaluation, all strengths of AIIR achieved less image noise, higher SNR and CNR (all p < 0.05). AIIR-H showed the lowest noise, highest SNR and CNR (p < 0.05). The increase of AIIR algorithm strengths did not affect BMD values significantly (all p > 0.05). Conclusion The deep learning-based iterative reconstruction did not affect the accuracy of BMD measurement with Low-dose chest CT, while reducing image noise and improving spatial resolution. Advances in knowledge The BMD values could be measured accurately in low-dose chest CT with deep learning-based iterative reconstruction, while reducing image noise and improving spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿湛发布了新的文献求助10
刚刚
科研通AI6应助judy007采纳,获得10
1秒前
科目三应助Yolo采纳,获得10
1秒前
老妖怪发布了新的文献求助10
2秒前
Hana发布了新的文献求助20
2秒前
Sisi发布了新的文献求助30
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
武子阳完成签到 ,获得积分10
9秒前
9秒前
大模型应助显隐采纳,获得10
10秒前
雨柏完成签到 ,获得积分10
12秒前
科研通AI6应助Sisi采纳,获得10
13秒前
14秒前
乐观发布了新的文献求助30
14秒前
归尘发布了新的文献求助10
14秒前
15秒前
feifanyang完成签到,获得积分10
17秒前
18秒前
寒冷猫咪完成签到,获得积分20
18秒前
19秒前
20秒前
一一完成签到 ,获得积分10
22秒前
xzy998应助重重采纳,获得10
22秒前
香蕉觅云应助显隐采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
qilinghe完成签到,获得积分10
28秒前
只想退休的牛油果完成签到,获得积分10
29秒前
33秒前
34秒前
36秒前
帕尔哈提完成签到,获得积分10
36秒前
紫紫完成签到,获得积分10
38秒前
39秒前
斯文败类应助拼搏从凝采纳,获得10
42秒前
科研小白完成签到,获得积分10
43秒前
47秒前
matt发布了新的文献求助30
47秒前
Owen应助红鲤鱼采纳,获得30
49秒前
qq完成签到 ,获得积分10
50秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202206
求助须知:如何正确求助?哪些是违规求助? 3736996
关于积分的说明 11767005
捐赠科研通 3409371
什么是DOI,文献DOI怎么找? 1870588
邀请新用户注册赠送积分活动 926133
科研通“疑难数据库(出版商)”最低求助积分说明 836439