亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast and accurate multi-class geospatial object detection with large-size remote sensing imagery using CNN and Truncated NMS

计算机科学 目标检测 人工智能 卷积神经网络 计算机视觉 滤波器(信号处理) 修剪 交叉口(航空) 对象(语法) 遥感 数据挖掘 模式识别(心理学) 地理 地图学 农学 生物
作者
Yanyun Shen,Di Liu,Feizhao Zhang,Qingling Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 235-249 被引量:20
标识
DOI:10.1016/j.isprsjprs.2022.07.019
摘要

Multi-class geospatial object detection with remote sensing imagery has broad prospects in urban planning, natural disaster warning, industrial production, military surveillance and other applications. Accuracy and efficiency are two common measures for evaluating object detection models, and it is often difficult to achieve both at the same time. Developing a practical remote sensing object detection algorithm that balances the accuracy and efficiency is thus a big challenge in the Earth observation community. Here, we propose a comprehensive high-speed multi-class remote sensing object detection method. Firstly, we obtain a multi-volume YOLO (You Only Look Once) v4 model for balancing speed and accuracy, based on a pruning strategy of the convolutional neural network (CNN) and the one-stage object detection network YOLO v4. Moreover, we apply the Manhattan-Distance Intersection of Union (MIOU) loss function to the multi-volume YOLO v4 to further improve the accuracy without additional computational burden. Secondly, mainly due to computing limitations, a remote sensing image that is large-size relative to a natural image must first be divided into multiple smaller tiles, which are then detected separately, and finally, the detection results are spliced back to match the original image. In the process of remote sensing image slicing, a large number of truncated objects appear at the edge of tiles, which will produce a large number of false results in the subsequent detection links. To solve this problem, we propose a Truncated Non-Maximum Suppression (NMS) algorithm to filter out repeated and false detection boxes from truncated targets in the spliced detection results. We compare the proposed algorithm with the state-of-the-art methods on the Dataset for Object deTection in Aerial images (DOTA) and DOTA v2. Quantitative evaluations show that mAP and FPS reach 77.3 and 35 on DOTA, and 61.0 and 74 on DOTA v2. Overall, our method reaches the optimal balance between efficiency and accuracy, and realizes the high-speed remote sensing object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡道天完成签到,获得积分10
5秒前
9秒前
12秒前
hkxfg发布了新的文献求助10
16秒前
Vision820发布了新的文献求助10
17秒前
提桶跑路完成签到 ,获得积分10
18秒前
一一完成签到 ,获得积分0
22秒前
hkxfg完成签到,获得积分10
22秒前
尚寻完成签到,获得积分10
43秒前
48秒前
烟花应助zhj采纳,获得10
49秒前
50秒前
53秒前
咸金城发布了新的文献求助30
54秒前
rofsc完成签到 ,获得积分10
1分钟前
科研通AI5应助ch采纳,获得80
1分钟前
1分钟前
晨曦完成签到 ,获得积分10
1分钟前
在水一方应助咸金城采纳,获得30
1分钟前
ch发布了新的文献求助10
1分钟前
1分钟前
慕青应助Rita采纳,获得10
1分钟前
1分钟前
慢歌完成签到 ,获得积分10
1分钟前
何拆发布了新的文献求助10
1分钟前
fan完成签到,获得积分10
1分钟前
咸金城发布了新的文献求助30
1分钟前
fan发布了新的文献求助10
1分钟前
1分钟前
CipherSage应助一个zzq采纳,获得10
1分钟前
小蘑菇应助咸金城采纳,获得30
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得30
1分钟前
1分钟前
一个zzq发布了新的文献求助10
1分钟前
1分钟前
咸金城发布了新的文献求助30
2分钟前
一个zzq完成签到,获得积分10
2分钟前
2分钟前
Hello应助永远采纳,获得10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833694
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492208
捐赠科研通 3095719
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792