Leveraging big data of immune checkpoint blockade response identifies novel potential targets

免疫检查点 封锁 医学 转录组 基因签名 肿瘤科 生物标志物 基因表达谱 免疫系统 免疫疗法 计算生物学 癌症研究 内科学 基因 生物信息学 免疫学 基因表达 生物 遗传学 受体
作者
Yacine Barèche,Deirdre Kelly,Farnoosh Abbas‐Aghababazadeh,Masahiro Nakano,Parinaz Nasr Esfahani,Douglas Tkachuk,Helai P. Mohammad,Robert M. Samstein,Chung‐Han Lee,Luc G.T. Morris,Philippe L. Bédard,Benjamin Haibe‐Kains,John Stagg
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:33 (12): 1304-1317 被引量:45
标识
DOI:10.1016/j.annonc.2022.08.084
摘要

Background

The development of immune checkpoint blockade (ICB) has changed the way we treat various cancers. While ICB produces durable survival benefits in a number of malignancies, a large proportion of treated patients do not derive clinical benefit. Recent clinical profiling studies have shed light on molecular features and mechanisms that modulate response to ICB. Nevertheless, none of these identified molecular features were investigated in large enough cohorts to be of clinical value.

Materials and methods

Literature review was carried out to identify relevant studies including clinical dataset of patients treated with ICB [anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1), anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) or the combination] and available sequencing data. Tumor mutational burden (TMB) and 37 previously reported gene expression (GE) signatures were computed with respect to the original publication. Biomarker association with ICB response (IR) and survival (progression-free survival/overall survival) was investigated separately within each study and combined together for meta-analysis.

Results

We carried out a comparative meta-analysis of genomic and transcriptomic biomarkers of IRs in over 3600 patients across 12 tumor types and implemented an open-source web application (predictIO.ca) for exploration. TMB and 21/37 gene signatures were predictive of IRs across tumor types. We next developed a de novo GE signature (PredictIO) from our pan-cancer analysis and demonstrated its superior predictive value over other biomarkers. To identify novel targets, we computed the T-cell dysfunction score for each gene within PredictIO and their ability to predict dual PD-1/CTLA-4 blockade in mice. Two genes, F2RL1 (encoding protease-activated receptor-2) and RBFOX2 (encoding RNA-binding motif protein 9), were concurrently associated with worse ICB clinical outcomes, T-cell dysfunction in ICB-naive patients and resistance to dual PD-1/CTLA-4 blockade in preclinical models.

Conclusion

Our study highlights the potential of large-scale meta-analyses in identifying novel biomarkers and potential therapeutic targets for cancer immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason0023完成签到,获得积分10
5秒前
浮尘完成签到 ,获得积分0
6秒前
科研搬运工完成签到,获得积分10
7秒前
g7001完成签到,获得积分10
7秒前
爆米花完成签到,获得积分10
9秒前
prim完成签到,获得积分10
11秒前
砰砰完成签到 ,获得积分10
15秒前
酷波er应助河边看水采纳,获得10
15秒前
bbb发布了新的文献求助10
18秒前
jianglili完成签到 ,获得积分10
21秒前
hilton完成签到 ,获得积分10
22秒前
blossoms完成签到 ,获得积分10
24秒前
孤鸿影98完成签到 ,获得积分10
24秒前
周涛完成签到,获得积分10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
cdercder应助科研通管家采纳,获得10
27秒前
double应助科研通管家采纳,获得30
27秒前
cdercder应助科研通管家采纳,获得10
27秒前
冰魂应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得30
27秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
情怀应助科研通管家采纳,获得10
28秒前
28秒前
cdercder应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
解剖六楼那小哥完成签到 ,获得积分10
30秒前
yuming568完成签到,获得积分10
30秒前
ZH完成签到 ,获得积分10
31秒前
likex完成签到,获得积分10
31秒前
不是山谷完成签到,获得积分10
33秒前
Ray羽曦~完成签到 ,获得积分10
35秒前
幻月完成签到,获得积分10
37秒前
lihan含完成签到 ,获得积分10
37秒前
单薄碧灵完成签到 ,获得积分10
38秒前
小yi又困啦完成签到 ,获得积分10
39秒前
化学搬砖完成签到,获得积分10
41秒前
cdercder应助NZH采纳,获得10
42秒前
susan完成签到 ,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776093
求助须知:如何正确求助?哪些是违规求助? 3321687
关于积分的说明 10206639
捐赠科研通 3036787
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841