Assessment of DeepONet for time dependent reliability analysis of dynamical systems subjected to stochastic loading

水准点(测量) 可靠性(半导体) 计算机科学 替代模型 不确定度量化 功能(生物学) 非线性系统 操作员(生物学) 人工神经网络 动力系统理论 高斯过程 随机过程 高斯分布 数学优化 机器学习 人工智能 算法 数学 统计 地理 化学 功率(物理) 抑制因子 物理 基因 生物 转录因子 进化生物学 量子力学 生物化学 大地测量学
作者
Shailesh Garg,Harshit Gupta,Souvik Chakraborty
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:270: 114811-114811
标识
DOI:10.1016/j.engstruct.2022.114811
摘要

Time dependent reliability analysis and uncertainty quantification of structural system subjected to stochastic forcing function is a challenging endeavour as it necessitates considerable computational time. We investigate the efficacy of recently proposed DeepONet in solving time dependent reliability analysis and uncertainty quantification of systems subjected to stochastic loading. Unlike conventional machine learning and deep learning algorithms, DeepONet is an operator network and learns a function to function mapping and hence, is ideally suited to propagate the uncertainty from the stochastic forcing function to the output responses. We use DeepONet to build a surrogate model for the dynamical system under consideration. Multiple case studies, involving both toy and benchmark problems, have been conducted to examine the efficacy of DeepONet in time dependent reliability analysis and uncertainty quantification of linear and nonlinear dynamical systems. Comparisons have also been drawn with Recurrent Neural Network results and with results obtained from Proper Orthogonal Decomposition based Gaussian process. The results obtained indicate that the DeepONet architecture is accurate as well as efficient. Moreover, DeepONet posses zero shot learning capabilities and hence, a trained model easily generalizes to unseen and new environment with no further training. • We investigate DeepONet for time-dependent reliability analysis. • DeepOnet learns operator and allows zero shot learning. • DeepONet accurately captures probability of failure and PDF of FPFT. • DeepONet is highly efficient and yields accurate results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助一一一采纳,获得10
1秒前
1秒前
沈客卿完成签到,获得积分10
1秒前
阿德利企鹅完成签到 ,获得积分10
1秒前
冷傲的山菡完成签到,获得积分10
1秒前
Will完成签到,获得积分10
2秒前
Nan发布了新的文献求助10
2秒前
YF发布了新的文献求助10
3秒前
温暖的皮皮虾完成签到,获得积分10
4秒前
一一完成签到,获得积分10
4秒前
科研通AI5应助hzauhzau采纳,获得10
5秒前
珊珊完成签到,获得积分10
8秒前
孤独丹秋完成签到,获得积分10
9秒前
柯科研发布了新的文献求助10
9秒前
丰富源智完成签到,获得积分10
10秒前
汤圆完成签到,获得积分10
10秒前
哈哈哈完成签到 ,获得积分10
12秒前
化合物来完成签到,获得积分10
12秒前
14秒前
漂亮白云完成签到 ,获得积分10
14秒前
小米粒完成签到,获得积分10
14秒前
gzf213完成签到,获得积分10
14秒前
xiao xu完成签到,获得积分10
16秒前
16秒前
wwww完成签到 ,获得积分10
17秒前
略略略完成签到 ,获得积分10
17秒前
18秒前
hzauhzau发布了新的文献求助10
19秒前
沉默的莞完成签到,获得积分10
19秒前
咕噜噜咕噜完成签到,获得积分10
21秒前
shouyu29发布了新的文献求助10
22秒前
袁同学完成签到,获得积分10
24秒前
甜心完成签到,获得积分10
25秒前
Microgan完成签到,获得积分10
26秒前
顾欢欢完成签到 ,获得积分10
28秒前
28秒前
槿曦完成签到 ,获得积分10
28秒前
捞鱼完成签到,获得积分10
28秒前
甘蓝型油菜完成签到,获得积分10
29秒前
heavenhorse完成签到,获得积分0
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379741
关于积分的说明 10510291
捐赠科研通 3099357
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615