Network modeling of major depressive disorder symptoms in adult women

重性抑郁障碍 心情 中心性 心理学 萧条(经济学) 精神科 贝叶斯网络 心理干预 临床心理学 计算机科学 数学 组合数学 宏观经济学 人工智能 经济
作者
Sheida Moradi,Mohammad Reza Falsafinejad,Ali Delavar,Vahid Rezaei Tabar,Ahmad Borjali,Steven H. Aggen,Kenneth S. Kendler
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (12): 5449-5458 被引量:8
标识
DOI:10.1017/s0033291722002604
摘要

Major depressive disorder (MDD) is one of the growing human mental health challenges facing the global health care system. In this study, the structural connectivity between symptoms of MDD is explored using two different network modeling approaches.Data are from 'the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders (VATSPSUD)'. A cohort of N = 2163 American Caucasian female-female twins was assessed as part of the VATSPSUD study. MDD symptoms were assessed using personal structured clinical interviews. Two network analyses were conducted. First, an undirected network model was estimated to explore the connectivity between the MDD symptoms. Then, using a Bayesian network, we computed a directed acyclic graph (DAG) to investigate possible directional relationships between symptoms.Based on the results of the undirected network, the depressed mood symptom had the highest centrality value, indicating its importance in the overall network of MDD symptoms. Bayesian network analysis indicated that depressed mood emerged as a plausible driving symptom for activating other symptoms. These results are consistent with DSM-5 guidelines for MDD. Also, somatic weight and appetite symptoms appeared as the strongest connections in both networks.We discuss how the findings of our study might help future research to detect clinically relevant symptoms and possible directional relationships between MDD symptoms defining major depression episodes, which would help identify potential tailored interventions. This is the first study to investigate the network structure of VATSPSUD data using both undirected and directed network models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanghuu发布了新的文献求助10
刚刚
211发布了新的文献求助10
刚刚
刚刚
刚刚
沐梓完成签到,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
香蕉觅云应助自信的柠檬采纳,获得10
2秒前
SGQT完成签到,获得积分10
2秒前
2秒前
77完成签到,获得积分10
2秒前
称心曼安应助莉莉采纳,获得10
2秒前
2秒前
烟花应助亓大大采纳,获得10
3秒前
3秒前
3秒前
zzww完成签到 ,获得积分10
3秒前
全力鸡发布了新的文献求助10
3秒前
赫诗云发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
科研通AI6应助段辉采纳,获得10
5秒前
闪闪的书本完成签到 ,获得积分10
5秒前
5秒前
机智语雪完成签到,获得积分10
6秒前
0ne222完成签到,获得积分10
6秒前
6秒前
想龙空发布了新的文献求助10
6秒前
星辰大海应助Hao_采纳,获得10
7秒前
季节应助超帅从彤采纳,获得20
7秒前
zz完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
无奈的中道完成签到,获得积分10
8秒前
CHENG发布了新的文献求助10
8秒前
斯文败类应助211采纳,获得10
9秒前
WYP发布了新的文献求助10
9秒前
Badada完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072099
求助须知:如何正确求助?哪些是违规求助? 4292584
关于积分的说明 13375086
捐赠科研通 4113598
什么是DOI,文献DOI怎么找? 2252529
邀请新用户注册赠送积分活动 1257381
关于科研通互助平台的介绍 1190193