Network modeling of major depressive disorder symptoms in adult women

重性抑郁障碍 心情 中心性 心理学 萧条(经济学) 精神科 贝叶斯网络 心理干预 临床心理学 计算机科学 数学 组合数学 宏观经济学 人工智能 经济
作者
Sheida Moradi,Mohammad Reza Falsafinejad,Ali Delavar,Vahid Rezaei Tabar,Ahmad Borjali,Steven H. Aggen,Kenneth S. Kendler
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (12): 5449-5458 被引量:7
标识
DOI:10.1017/s0033291722002604
摘要

Major depressive disorder (MDD) is one of the growing human mental health challenges facing the global health care system. In this study, the structural connectivity between symptoms of MDD is explored using two different network modeling approaches.Data are from 'the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders (VATSPSUD)'. A cohort of N = 2163 American Caucasian female-female twins was assessed as part of the VATSPSUD study. MDD symptoms were assessed using personal structured clinical interviews. Two network analyses were conducted. First, an undirected network model was estimated to explore the connectivity between the MDD symptoms. Then, using a Bayesian network, we computed a directed acyclic graph (DAG) to investigate possible directional relationships between symptoms.Based on the results of the undirected network, the depressed mood symptom had the highest centrality value, indicating its importance in the overall network of MDD symptoms. Bayesian network analysis indicated that depressed mood emerged as a plausible driving symptom for activating other symptoms. These results are consistent with DSM-5 guidelines for MDD. Also, somatic weight and appetite symptoms appeared as the strongest connections in both networks.We discuss how the findings of our study might help future research to detect clinically relevant symptoms and possible directional relationships between MDD symptoms defining major depression episodes, which would help identify potential tailored interventions. This is the first study to investigate the network structure of VATSPSUD data using both undirected and directed network models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助1Yer6采纳,获得10
1秒前
xzy998应助高大的昊强采纳,获得10
1秒前
我是老大应助煜琪采纳,获得10
1秒前
sunyanghu369发布了新的文献求助10
2秒前
yeah完成签到,获得积分10
2秒前
王鑫完成签到,获得积分20
2秒前
2秒前
2秒前
大方博涛完成签到,获得积分10
3秒前
面向阳光完成签到,获得积分10
4秒前
英俊的铭应助非凡采纳,获得10
4秒前
博修发布了新的文献求助10
5秒前
5秒前
6秒前
luoluoluo_完成签到,获得积分20
6秒前
善学以致用应助sunyanghu369采纳,获得10
6秒前
jiyuan完成签到,获得积分10
7秒前
王鑫发布了新的文献求助10
7秒前
卜君浩发布了新的文献求助10
7秒前
陈三三发布了新的文献求助30
7秒前
Lucas应助Son4904采纳,获得10
8秒前
dl发布了新的文献求助10
8秒前
赘婿应助炖地瓜采纳,获得10
9秒前
vv发布了新的文献求助10
9秒前
yar应助Songcha采纳,获得10
10秒前
justin完成签到 ,获得积分10
11秒前
11秒前
医学完成签到,获得积分10
12秒前
13秒前
13秒前
田様应助王鑫采纳,获得10
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081482
求助须知:如何正确求助?哪些是违规求助? 3620898
关于积分的说明 11487524
捐赠科研通 3336285
什么是DOI,文献DOI怎么找? 1834076
邀请新用户注册赠送积分活动 902879
科研通“疑难数据库(出版商)”最低求助积分说明 821351