亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Increasing the Scale of the Mass Spectrometry Query Language Compendium with Explainable AI

化学 简编 计算机科学 瓶颈 数据挖掘 集合(抽象数据类型) 情报检索 人工智能 考古 嵌入式系统 历史 程序设计语言
作者
Thomas V. Harwood,Mingxun Wang,Trent R. Northen,Benjamin P. Bowen
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (35): 18860-18866
标识
DOI:10.1021/acs.analchem.5c02591
摘要

A significant bottleneck in metabolomics data interpretation is the effective use of domain knowledge to assign structural information based on fragmentation patterns. The mass spectrometry query language (MassQL) aims to make this process accessible and applicable across multiple analysis platforms. While advanced computational methods are capable of predicting compound structures from fragmentation data, AI/ML approaches often rely on complex, opaque criteria that are difficult to interpret or modify. As a result, their predictive patterns cannot be readily translated into human-readable rules, such as those used in MassQL. In this study, we introduce ChemEcho, a machine learning embedding method that converts tandem mass spectrometry data into sparse feature vectors containing peak and neutral mass subformulae to enhance explainable AI/ML-based methods. An advantage of this approach is that decision trees trained using these feature vectors can be directly translated to MassQL. Using a battery of decision trees trained using ChemEcho embeddings to predict molecular attributes, we generated over 1500 MassQL queries for 765 molecular features and evaluated their precision and recall. From these queries, the 50 highest-performing queries were integrated into the MassQL compendium. This set of generated MassQL queries included environmentally and biologically relevant classes such as PFAS and molecules containing phosphate or sulfate substructures. To illustrate the impact these queries would have on a typical metabolomics experiment, these MassQL queries were applied to a public metabolomics data set─resulting in a marked increase in the structural information derived from tandem mass spectra. Access and reuse of these queries is expected to enhance structural annotation in untargeted experiments, leading to more specific claims and advancing many applications in metabolomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZ完成签到,获得积分10
4秒前
5秒前
6秒前
小碗完成签到 ,获得积分10
8秒前
ZZ发布了新的文献求助10
11秒前
大碗完成签到 ,获得积分10
12秒前
赘婿应助南风知我意采纳,获得10
16秒前
万邦德完成签到,获得积分10
18秒前
vicky完成签到 ,获得积分10
27秒前
英俊的铭应助星火采纳,获得10
28秒前
今后应助鳄鱼不做饿梦采纳,获得50
53秒前
归尘应助科研通管家采纳,获得20
1分钟前
假面绅士完成签到,获得积分10
1分钟前
1分钟前
丘比特应助TiAmo采纳,获得10
1分钟前
kei完成签到 ,获得积分10
1分钟前
1分钟前
ccccx发布了新的文献求助10
1分钟前
TiAmo发布了新的文献求助10
2分钟前
2分钟前
尼龙niuniu完成签到,获得积分20
2分钟前
尼龙niuniu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
liaoliao发布了新的文献求助10
2分钟前
可爱的函函应助尼龙niuniu采纳,获得10
2分钟前
科研通AI2S应助羊z采纳,获得20
3分钟前
加缪应助ccccx采纳,获得30
3分钟前
3分钟前
英姑应助ccccx采纳,获得10
3分钟前
叶凡发布了新的文献求助10
3分钟前
3分钟前
3分钟前
叶凡完成签到 ,获得积分10
3分钟前
ccczzz应助ccccx采纳,获得10
3分钟前
4分钟前
4分钟前
NexusExplorer应助伍次友采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077548
求助须知:如何正确求助?哪些是违规求助? 4296577
关于积分的说明 13387168
捐赠科研通 4119043
什么是DOI,文献DOI怎么找? 2255656
邀请新用户注册赠送积分活动 1260024
关于科研通互助平台的介绍 1193363