材料科学
复合材料
复合数
撞车
纤维
吸收(声学)
聚合物
计算机科学
程序设计语言
作者
Ertan Kösedağ,Zumray Araz,Baran Erkek
摘要
ABSTRACT Vehicle crash boxes, mounted on the chassis before the bumper, absorb impact energy to protect passengers, but their metal construction adds weight, prompting increased research into lightweight composite alternatives with comparable strength. In this study, energy absorption values (EA), specific energy absorption (SEA), peak forces (PF) and crashing force efficiency (CFE) of carbon fiber, glass fiber, and aramid fiber reinforced composite crash boxes with epoxy resin matrix were compared. Composite crash boxes with different geometries were fabricated using vacuum infusion method in three different geometries: hexagonal, circle, and square. Unlike hand lay‐up and prepreg winding methods, vacuum infusion method was chosen because it provides homogeneous distribution of epoxy resin. The crashworthiness of the samples was evaluated through quasi‐static compression tests. The best energy absorption performance was obtained with the hexagonal carbon fiber‐reinforced composite crash box (246.17 J), corresponding to a specific energy absorption of 8.57 J/g. Although aramid fiber‐reinforced specimens showed lower energy absorption, they exhibited the highest crash force efficiency among all tested configurations. These results confirm the significant influence of both fiber type and geometry on the crashworthiness of polymer‐based composite crash boxes. The study highlights that hexagonal geometry consistently provided superior energy absorption across all fiber types, while carbon fiber‐reinforced composites demonstrated the best overall mechanical performance, making them strong candidates for lightweight crashworthiness applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI