亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wall deflection prediction for braced excavations in soft clay overlying stiff soil

岩土工程 偏转(物理) 地质学 粘土 发掘 土壤水分 土壤科学 物理 光学
作者
Runhong Zhang,Zhihao Wu,Kai Yan,Xuepeng Li,Y. Liu,Anthony T.C. Goh,Weixin Sun
标识
DOI:10.1093/iti/liaf006
摘要

Abstract Urbanization has intensified the demand for deep excavations, particularly in soft clay environments, where controlling wall deflection poses significant engineering challenges due to the low strength, high compressibility, and sensitivity of the soft clay. Traditional methods relying on empirical and mechanical calculations often fall short under such complex geological conditions, necessitating advanced predictive techniques. This study investigates wall deflection during braced excavations in soft clay overlying stiff soil using a combination of finite element analysis (FEA) and machine learning approaches. A Hardening Soil model was employed to simulate the soil, incorporating six critical variables, including the excavation width, soft clay thickness, soil undrained shear strength, soil modulus ratio, diaphragm wall width, and excavation depth. A total of 768 cases were analyzed, generating a comprehensive deformation database. These data were further supplemented with field monitoring records, creating a robust dataset of 906 samples for machine learning analysis. Four machine learning algorithms, Decision Tree, Random Forest (RF), Polynomial Regression, and XGBoost, were evaluated for their predictive accuracy using metrics such as Root Mean Square Error, Coefficient of Determination, and Mean Absolute Error. Results highlight the RF model’s superior performance, with stable accuracy across training and test datasets, while XGBoost showed promising results with slightly reduced generalization. Spearman correlation analysis revealed strong correlations between deflection and variables like soft clay thickness and soil undrained shear strength. A series of design charts has been developed and verified. This study not only demonstrates the efficacy of integrating FEA and big data techniques but also identifies key factors influencing wall deflection. These findings provide insights for advanced predictive methodologies in geotechnical engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMMMM完成签到,获得积分10
5秒前
DreamMaker完成签到,获得积分10
9秒前
15秒前
16秒前
小马甲应助诚心文博采纳,获得10
18秒前
量子星尘发布了新的文献求助10
22秒前
42秒前
54秒前
酷波er应助cc采纳,获得10
56秒前
Yvette2024发布了新的文献求助10
1分钟前
1分钟前
1分钟前
诚心文博发布了新的文献求助10
1分钟前
Yvette2024完成签到,获得积分10
1分钟前
cc发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
mumumuzzz发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
1分钟前
1分钟前
快乐听南发布了新的文献求助30
1分钟前
1分钟前
1分钟前
哇达西哇发布了新的文献求助10
1分钟前
科研通AI2S应助哇达西哇采纳,获得10
2分钟前
NexusExplorer应助miku1采纳,获得10
2分钟前
2分钟前
miku1发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
3分钟前
燚龘发布了新的文献求助10
3分钟前
zhangxiaopan完成签到,获得积分10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
Jessica发布了新的文献求助10
4分钟前
牧沛凝完成签到 ,获得积分10
4分钟前
Jessica完成签到,获得积分10
4分钟前
lby关闭了lby文献求助
4分钟前
SYLH应助zhangxiaopan采纳,获得10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142874
求助须知:如何正确求助?哪些是违规求助? 3679083
关于积分的说明 11627763
捐赠科研通 3372547
什么是DOI,文献DOI怎么找? 1852392
邀请新用户注册赠送积分活动 915180
科研通“疑难数据库(出版商)”最低求助积分说明 829680