Probing Molecular Level and Subnanoscale Stabilization Mechanisms of Organic Carbon Species during Fe(II)-Induced Ferrihydrite Transformation

铁酸盐 碳纤维 环境化学 总有机碳 转化(遗传学) 化学 溶解有机碳 化学工程 无机化学 材料科学 有机化学 生物化学 吸附 工程类 复合材料 复合数 基因
作者
Fu Liu,Yuzhen Liang,Runliang Zhu,Jiang Xiao,Jieqi Xing,Lanlan Zhu,Qianting Ye,Yijin Lv,Zhenqing Shi
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.5c04803
摘要

Soil dissolved organic matter (DOM) is known to affect iron (Fe) oxide transformation, which may further affect organic carbon (OC) sequestration. However, soil DOM is heterogeneous with varying molecular weights (MW), and how the dynamic interplay between DOM molecules and Fe oxides affects the sequestration of different OC species remains elusive. In this study, we separated DOM into <3, 3-10, and >10 kDa fractions by ultrafiltration to investigate the dynamic distribution of OC species at the molecular level and subnanoscale during ferrihydrite-OC coprecipitate transformation. Compared with the low MW DOM fraction, the higher MW DOM fractions inhibited Fe oxide transformation less, but showed stronger sequestration ability on Fe oxides, due to more aromatic compounds with higher carboxyl number per molecule. Despite the above difference, the released DOM during mineral transformation was similar to mainly nonaromatic compositions. At the nano to subnanoscales, aromatic-rich compounds were sequestered within the defective/porous structure of Fe oxides, whereas high crystalline Fe oxides promoted the sequestration of carboxyl-rich compounds. Our study provides novel insights into the sequestration mechanisms of different OC species during Fe oxide transformation and highlights the significance of incorporating MW-dependent DOM compositions when predicting SOC stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Asuka完成签到,获得积分10
刚刚
1秒前
彭于晏应助hhh采纳,获得10
1秒前
乐乐应助老实紫萱采纳,获得10
2秒前
clm完成签到 ,获得积分10
3秒前
共享精神应助kingJames采纳,获得10
3秒前
oneday完成签到,获得积分10
4秒前
4秒前
汉堡包应助lin采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
不想干活应助呆萌的书包采纳,获得10
9秒前
小王完成签到,获得积分10
10秒前
田様应助cx采纳,获得10
10秒前
科研通AI5应助聪慧凡蕾采纳,获得10
12秒前
12秒前
12秒前
赘婿应助殷勤的紫槐采纳,获得10
13秒前
小王发布了新的文献求助10
19秒前
李李我关注了科研通微信公众号
20秒前
名字和题目一样难完成签到 ,获得积分10
21秒前
22秒前
yyy完成签到,获得积分20
23秒前
24秒前
DELI完成签到 ,获得积分10
26秒前
完美世界应助慕乐珍采纳,获得10
26秒前
科研通AI6应助真三采纳,获得10
27秒前
cx发布了新的文献求助10
27秒前
答辩完成签到,获得积分10
27秒前
单薄乐珍完成签到 ,获得积分0
28秒前
在水一方应助easyaction采纳,获得10
29秒前
yyy关注了科研通微信公众号
30秒前
30秒前
30秒前
SciGPT应助小王采纳,获得10
30秒前
32秒前
北三十发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
New Essays on Normative Realism 600
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4218177
求助须知:如何正确求助?哪些是违规求助? 3752088
关于积分的说明 11798322
捐赠科研通 3416784
什么是DOI,文献DOI怎么找? 1875171
邀请新用户注册赠送积分活动 928984
科研通“疑难数据库(出版商)”最低求助积分说明 837885