Deep Learning Models for CT Segmentation of Invasive Pulmonary Aspergillosis, Mucormycosis, Bacterial Pneumonia and Tuberculosis: A Multicentre Study

医学 分割 肺炎 放射科 人工智能 内科学 计算机科学
作者
Yun Li,Feifei Huang,Deyan Chen,Youwen Zhang,Xia Zhang,Lina Liang,Junnan Pan,Lunfang Tan,Shuyi Liu,Junfeng Lin,Zhengtu Li,Guodong Hu,Huai Chen,Chengbao Peng,Feng Ye,Jinping Zheng
出处
期刊:Mycoses [Wiley]
卷期号:68 (7) 被引量:1
标识
DOI:10.1111/myc.70084
摘要

ABSTRACT Background The differential diagnosis of invasive pulmonary aspergillosis (IPA), pulmonary mucormycosis (PM), bacterial pneumonia (BP) and pulmonary tuberculosis (PTB) are challenging due to overlapping clinical and imaging features. Manual CT lesion segmentation is time‐consuming, deep‐learning (DL)‐based segmentation models offer a promising solution, yet disease‐specific models for these infections remain underexplored. Objectives We aimed to develop and validate dedicated CT segmentation models for IPA, PM, BP and PTB to enhance diagnostic accuracy. Methods:Retrospective multi‐centre data (115 IPA, 53 PM, 130 BP, 125 PTB) were used for training/internal validation, with 21 IPA, 8PM, 30 BP and 31 PTB cases for external validation. Expert‐annotated lesions served as ground truth. An improved 3D U‐Net architecture was employed for segmentation, with preprocessing steps including normalisations, cropping and data augmentation. Performance was evaluated using Dice coefficients. Results:Internal validation achieved Dice scores of 78.83% (IPA), 93.38% (PM), 80.12% (BP) and 90.47% (PTB). External validation showed slightly reduced but robust performance: 75.09% (IPA), 77.53% (PM), 67.40% (BP) and 80.07% (PTB). The PM model demonstrated exceptional generalisability, scoring 83.41% on IPA data. Cross‐validation revealed mutual applicability, with IPA/PTB models achieving > 75% Dice for each other's lesions. BP segmentation showed lower but clinically acceptable performance ( >72%), likely due to complex radiological patterns. Conclusions Disease‐specific DL segmentation models exhibited high accuracy, particularly for PM and PTB. While IPA and BP models require refinement, all demonstrated cross‐disease utility, suggesting immediate clinical value for preliminary lesion annotation. Future efforts should enhance datasets and optimise models for intricate cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助奇奇采纳,获得10
刚刚
1秒前
1秒前
1秒前
吴所谓完成签到,获得积分10
2秒前
victor完成签到,获得积分20
2秒前
zzjjyy完成签到,获得积分10
2秒前
隐形曼青应助lgj666采纳,获得10
3秒前
李健应助Sakura采纳,获得10
3秒前
Lucas应助糕糕采纳,获得10
3秒前
安安发布了新的文献求助10
3秒前
4秒前
糖油果子发布了新的文献求助10
4秒前
jeff发布了新的文献求助10
5秒前
丘比特应助激动的一手采纳,获得10
5秒前
5秒前
浅蓝默完成签到,获得积分10
6秒前
Why完成签到,获得积分10
6秒前
Yeah发布了新的文献求助10
6秒前
zerotwo关注了科研通微信公众号
6秒前
6秒前
7秒前
8秒前
8秒前
Qi发布了新的文献求助10
9秒前
9秒前
9秒前
共享精神应助zjw采纳,获得10
9秒前
10秒前
斯文败类应助笨笨曲奇采纳,获得10
10秒前
DaPei发布了新的文献求助10
11秒前
yueyueyue发布了新的文献求助10
11秒前
GeZhang完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
wenwen完成签到,获得积分10
13秒前
糕糕发布了新的文献求助10
13秒前
qwe完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Xenolinguistics Towards a Science of Extraterrestrial Language 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5026347
求助须知:如何正确求助?哪些是违规求助? 4262891
关于积分的说明 13287943
捐赠科研通 4070703
什么是DOI,文献DOI怎么找? 2226427
邀请新用户注册赠送积分活动 1234983
关于科研通互助平台的介绍 1158970