清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Thermodynamic properties of tetragonal silicene nanoribbons under the influence of bias voltage and magnetic field

凝聚态物理 磁场 偏压 材料科学 四方晶系 费米能级 热电效应 磁化 物理 电压 相(物质) 热力学 电子 量子力学
作者
Somayeh Behzad
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 31835-31835 被引量:3
标识
DOI:10.1038/s41598-025-15844-6
摘要

This theoretical study provides a comprehensive analysis of the tunable influence of combined electric bias and magnetic fields on the thermoelectric properties of Tetragonal Silicene nanoribbons (T-SiNRs). The analysis focuses on both symmetric and asymmetric lattice configurations of T-SiNRs. The findings reveal that the application of a bias voltage induces an energy gap, transforming metallic T-SiNRs into semiconductors. In contrast, a magnetic field produces distinct effects: the Zeeman effect preserves the metallic nature by enhancing the density of states near the Fermi level, while the Peierls phase can induce a small band gap under specific field strengths. The thermodynamic properties, including thermal conductivity κ(T), heat capacity C(T) and Lorenz number L(T) exhibit distinct responses to these external perturbations: bias voltage significantly reduces these properties, particularly at higher temperatures, whereas a magnetic field enhances them. The emergence of a zero-intensity region in temperature-dependent functions, attributed to the suppression of charge carrier excitation, expands with increasing bias voltage but diminishes under a magnetic field. Moreover, the simultaneous application of bias voltage and a magnetic field enhances thermodynamic properties across various temperature ranges, compared to the unperturbed cases. Symmetric T-SiNRs exhibit higher thermal conductivity and heat capacity at low temperatures, while asymmetric structures dominate at higher temperatures. The behavior of the Lorenz number is particularly sensitive to external fields, with its peak position and intensity increasing under bias voltage but decreasing with the magnetic field. These findings highlight the potential of T-SiNRs for advanced nanoelectronic and thermophotonic applications, where precise modulation of thermal and electronic properties is critical for optimizing device performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
34秒前
37秒前
puzhongjiMiQ完成签到,获得积分10
39秒前
小萝卜1234发布了新的文献求助10
40秒前
40秒前
puzhongjiMiQ发布了新的文献求助10
41秒前
酷波er应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
慕青应助TiAmo采纳,获得10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
无限的千凝完成签到 ,获得积分10
2分钟前
2分钟前
Ann发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
正直小鸭子应助Ann采纳,获得10
2分钟前
霸气雁桃发布了新的文献求助10
2分钟前
3分钟前
ding应助孝顺的冬卉采纳,获得10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
纯氧完成签到,获得积分10
3分钟前
迷茫的一代完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494131
求助须知:如何正确求助?哪些是违规求助? 4591988
关于积分的说明 14435106
捐赠科研通 4524645
什么是DOI,文献DOI怎么找? 2478905
邀请新用户注册赠送积分活动 1463844
关于科研通互助平台的介绍 1436702