I-YOLOv11n: A Lightweight and Efficient Small Target Detection Framework for UAV Aerial Images

计算机视觉 人工智能 计算机科学 航空影像 航空影像 遥感 图像(数学) 地理
作者
Yukai Ma,Caiping Xi,Ting Ma,Han Xu Sun,Hongyu Lu,Xiang Xu,Xu Chen
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (15): 4857-4857
标识
DOI:10.3390/s25154857
摘要

UAV small target detection in urban security, disaster monitoring, agricultural inspection, and other fields faces the challenge of increasing accuracy and real-time requirements. However, existing detection algorithms still have weak small target representation ability, extensive computational resource overhead, and poor deployment adaptability. Therefore, this paper proposes a lightweight algorithm, I-YOLOv11n, based on YOLOv11n, which is systematically improved in terms of both feature enhancement and structure compression. The RFCBAMConv module that combines deformable convolution and channel–spatial attention is designed to adjust the receptive field and strengthen the edge features dynamically. The multiscale pyramid of STCMSP context and the lightweight Transformer–DyHead hybrid detection head are designed by combining the multiscale hole feature pyramid (DFPC), which realizes the cross-scale semantic modeling and adaptive focusing of the target area. A collaborative lightweight strategy is proposed. Firstly, the semantic discrimination ability of the teacher model for small targets is transferred to guide and protect the subsequent compression process by integrating the mixed knowledge distillation of response alignment, feature imitation, and structure maintenance. Secondly, the LAMP–Taylor channel pruning mechanism is used to compress the model redundancy, mainly to protect the key channels sensitive to shallow small targets. Finally, K-means++ anchor frame optimization based on IoU distance is implemented to adapt the feature structure retained after pruning and the scale distribution of small targets of UAV. While significantly reducing the model size (parameter 3.87 M, calculation 14.7 GFLOPs), the detection accuracy of small targets is effectively maintained and improved. Experiments on VisDrone, AI-TOD, and SODA-A datasets show that the mAP@0.5 and mAP@0.5:0.95 of I-YOLOv11n are 7.1% and 4.9% higher than the benchmark model YOLOv11 n, respectively, while maintaining real-time processing capabilities, verifying its comprehensive advantages in accuracy, light weight, and deployment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
1秒前
陈星翰完成签到,获得积分10
1秒前
1秒前
2秒前
kk发布了新的文献求助10
3秒前
4秒前
认真学习的rr完成签到,获得积分10
4秒前
我爱大肠发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
风止发布了新的文献求助10
7秒前
8秒前
dongge发布了新的文献求助10
8秒前
zeng完成签到,获得积分20
9秒前
脑洞疼应助淡淡念桃采纳,获得10
9秒前
小青椒应助蔡静雯popo采纳,获得50
9秒前
simoncai发布了新的文献求助10
10秒前
天天快乐应助Leasq采纳,获得10
10秒前
123456发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
滴滴答答发布了新的文献求助10
14秒前
科研小白发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助20
15秒前
Owen应助典雅的静采纳,获得10
15秒前
LUNIX发布了新的文献求助10
15秒前
加缪发布了新的文献求助30
15秒前
加缪发布了新的文献求助30
15秒前
huangqian完成签到 ,获得积分10
15秒前
15秒前
爱吃酥饼发布了新的文献求助10
15秒前
SciGPT应助湖湖采纳,获得10
15秒前
Qian完成签到,获得积分10
16秒前
林文勇完成签到,获得积分10
16秒前
加缪发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886200
求助须知:如何正确求助?哪些是违规求助? 4171169
关于积分的说明 12943805
捐赠科研通 3931690
什么是DOI,文献DOI怎么找? 2157185
邀请新用户注册赠送积分活动 1175580
关于科研通互助平台的介绍 1080137