催化作用
电催化剂
价(化学)
密度泛函理论
化学
析氧
原子半径
过渡金属
价电子
计算机科学
Atom(片上系统)
金属有机骨架
材料科学
化学物理
计算化学
物理化学
电子
电化学
物理
电极
量子力学
嵌入式系统
吸附
有机化学
生物化学
作者
Kun Xie,Ye Shen,Long Lin,Xiangyu Guo,Shengli Zhang,Baolei Li
标识
DOI:10.1021/acs.jpclett.5c02042
摘要
This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM3(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM3(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM3(HXBHYB)@MOF and their ORR/OER overpotentials. Model predictions identified promising systems, including Co3(HXBHYB) and Ir3(HXBHYB), with Co3(HHBHSB) and Co(HIB)2 exhibiting exceptional ORR (ηORR = 0.276 V) and OER (ηOER = 0.294 V) activities. SHAP analysis highlighted the valence electron count and atomic radius of the TM as critical descriptors, with the interaction between coordinating atoms and TM valence electrons governing catalytic activity. This work provides universal design principles for evaluating ORR/OER activities, offering a high-precision, low-cost method for catalyst screening.
科研通智能强力驱动
Strongly Powered by AbleSci AI