亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Commercial vision sensors and AI-based pose estimation frameworks for markerless motion analysis in sports and exercises: a mini review

运动捕捉 计算机科学 运动学 人工智能 计算机视觉 姿势 运动(物理) 运动分析 运动生物力学 人机交互 模拟 经典力学 物理
作者
Saeid Edriss,Cristian Romagnoli,Lucio Caprioli,Vincenzo Bonaiuto,Elvira Padua,Giuseppe Annino
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:16: 1649330-1649330 被引量:2
标识
DOI:10.3389/fphys.2025.1649330
摘要

Kinematic and biomechanical analysis in monitoring human movement to assess athletes’ or patients’ motor control behaviors. Traditional motion capture systems provide high accuracy but are expensive and complex for the public. Recent advancements in markerless systems using videos captured with commercial RGB, depth, and infrared cameras, such as Microsoft Kinect, StereoLabs ZED Camera, and Intel RealSense, enable the acquisition of high-quality videos for 2D and 3D kinematic analyses. On the other hand, open-source frameworks like OpenPose, MediaPipe, AlphaPose, and DensePose are the new generation of 2D or 3D mesh-based markerless motion tools that utilize standard cameras in motion analysis through real-time and offline pose estimation models in sports, clinical, and gaming applications. The review examined studies that focused on the validity and reliability of these technologies compared to gold-standard systems, specifically in sports and exercise applications. Additionally, it discusses the optimal setup and perspectives for achieving accurate results in these studies. The findings suggest that 2D systems offer economic and straightforward solutions, but they still face limitations in capturing out-of-plane movements and environmental factors. Merging vision sensors with built-in artificial intelligence and machine learning software to create 2D-to-3D pose estimation is highlighted as a promising method to address these challenges, supporting the broader adoption of markerless motion analysis in future kinematic and biomechanical research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Gossip发布了新的文献求助30
9秒前
10秒前
ttxxcdx完成签到 ,获得积分10
14秒前
19秒前
24秒前
Fan应助fuyaoye2010采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
37秒前
YifanWang应助科研通管家采纳,获得30
37秒前
YifanWang应助科研通管家采纳,获得30
37秒前
37秒前
YifanWang应助科研通管家采纳,获得30
37秒前
YifanWang应助科研通管家采纳,获得30
37秒前
53秒前
莫miang完成签到,获得积分10
56秒前
57秒前
ling361完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
矢思然完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
中中完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
科研通AI6.1应助Karol采纳,获得10
2分钟前
2分钟前
2分钟前
桐桐应助Karol采纳,获得10
2分钟前
领导范儿应助Karol采纳,获得20
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746752
求助须知:如何正确求助?哪些是违规求助? 5438610
关于积分的说明 15355852
捐赠科研通 4886774
什么是DOI,文献DOI怎么找? 2627426
邀请新用户注册赠送积分活动 1575893
关于科研通互助平台的介绍 1532627