Geometry optimization of an origami-inspired delta mechanism using genetic algorithm

机制(生物学) 遗传算法 计算机科学 算法 几何学 物理 数学 机器学习 量子力学
作者
Shahrad Samankan,Merve Acer Kalafat,Ata Arjomandi Fard,Atakan Altınkaynak
标识
DOI:10.1177/09544062251352654
摘要

This paper optimizes the geometry of a novel Delta mechanism via origami-inspired fabrication. The aim is to maximize workspace volume without increasing the mechanism’s footprint. Optimize the geometry to increase the limitation of the mechanism and experimentally test the optimized mechanism and compare the results with the original one. The Delta mechanism’s novelty altered fabrication and design parameters. A genetic algorithm, a common optimization method, was applied. Finite element analysis examined the impact of elastic joints. Experiments compared the kinematic model’s workspace trajectory between optimized and initial mechanisms. The paper reports a 35% increase in workspace volume over the initial mechanism while maintaining a constant footprint size. The optimized mechanism achieves sub-0.5 mm root mean square (RMS) accuracy in the X , Y , and Z directions, ensuring precise positioning within the calculated workspace using rigid kinematics. Despite the expanded workspace, the accuracy of reaching boundary points remains nearly constant compared to the initial model. This study covers only a specific type of parallel mechanism fabricated by the origami-inspired method. Therefore, researchers are encouraged to test and optimize different mechanisms with higher degree of freedom further. The paper discusses implications for advancing flexible mechanisms especially origami-inspired mechanisms, a widely studied type in recent research. Employing optimization techniques can enhance accuracy, reliability, and cost-effectiveness in the fabrication process for other types of mechanisms. This paper addresses the acknowledged requirement to delve into origami-inspired mechanisms, featuring distinctive design parameters and fabrication methods when compared to conventional mechanisms. The significance of this inquiry is heightened by the existing dearth of design optimization in flexible parallel mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助李治稳采纳,获得10
刚刚
研友_8425xn发布了新的文献求助10
1秒前
zjj完成签到,获得积分10
1秒前
隐形的惜筠完成签到 ,获得积分10
2秒前
牧羊人发布了新的文献求助30
3秒前
ding完成签到 ,获得积分10
4秒前
范春艳发布了新的文献求助80
4秒前
4秒前
4秒前
3438881284完成签到,获得积分10
6秒前
FashionBoy应助碧蓝无极采纳,获得10
7秒前
zjj发布了新的文献求助100
7秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
蓝天应助Cookie采纳,获得10
10秒前
Ohh发布了新的文献求助20
10秒前
科研通AI2S应助水果小王子采纳,获得10
10秒前
10秒前
顾矜应助阿洁采纳,获得10
11秒前
dzz发布了新的文献求助10
14秒前
研友_nPbeR8发布了新的文献求助50
15秒前
dfggg发布了新的文献求助10
15秒前
wanci应助QQ采纳,获得10
16秒前
16秒前
16秒前
zzzqqq完成签到,获得积分10
17秒前
17秒前
18秒前
20秒前
panyuz发布了新的文献求助30
20秒前
小仓库发布了新的文献求助10
20秒前
小怪发布了新的文献求助10
21秒前
苗条雅彤完成签到,获得积分10
21秒前
22秒前
22秒前
充电宝应助Chan0427采纳,获得10
23秒前
zzzqqq发布了新的文献求助20
23秒前
sfsfes发布了新的文献求助30
23秒前
Agoni完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632882
求助须知:如何正确求助?哪些是违规求助? 4728147
关于积分的说明 14984358
捐赠科研通 4790889
什么是DOI,文献DOI怎么找? 2558632
邀请新用户注册赠送积分活动 1519067
关于科研通互助平台的介绍 1479370