Predicting the Glass Transition Temperature of Biopolymers via High-Throughput Molecular Dynamics Simulations and Machine Learning

玻璃化转变 动力学(音乐) 分子动力学 吞吐量 过渡(遗传学) 材料科学 统计物理学 化学物理 计算机科学 化学 物理 聚合物 计算化学 复合材料 基因 电信 生物化学 声学 无线
作者
Didac Martí,Rémi Pétuya,Emanuele Bosoni,Anne‐Claude Dublanchet,Stephan Mohr,Fabien Léonforte
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (8): 4449-4461 被引量:11
标识
DOI:10.1021/acsapm.3c03040
摘要

Nature has only provided us with a limited number of biobased and biodegradable building blocks. Therefore, the fine-tuning of the sustainable polymer properties is expected to be achieved through the control of the composition of biobased copolymers for targeted applications such as cosmetics. Until now, the main approaches to alleviate the experimental efforts and accelerate the discovery of polymers have relied on machine learning models trained on experimental data, which implies enormous and difficult work in the compilation of data from heterogeneous sources. On the other hand, molecular dynamics simulations of polymers have shown that they can accurately capture the experimental trends for a series of properties. However, the combination of different ratios of monomers in copolymers can rapidly lead to a combinatorial explosion, preventing investigation of all possibilities via molecular dynamics simulations. In this work, we show that the combination of machine learning approaches and high-throughput molecular dynamics simulations permits quick and efficient sampling and characterization of the relevant chemical design space for specific applications. Reliable simulation protocols have been implemented to evaluate the glass transition temperature of a series of 58 homopolymers, which exhibit good agreement with experiments, and 488 copolymers. Overall, 2,184 simulations (four replicas per polymer) were performed, for a total simulation time of 143.052 μs. These results, constituting a data set of 546 polymers, have been used to train a machine learning model for the prediction of the MD-calculated glass transition temperature with a mean absolute error of 19.34 K and an R2 score of 0.83. Overall, within its applicability domain, this machine learning model provides an impressive acceleration over molecular dynamics simulations: the glass transition temperature of thousands of polymers can be obtained within seconds, whereas it would have taken node-years to simulate them. This type of approach can be tuned to address different design spaces or different polymer properties and thus has the potential to accelerate the discovery of polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zooey旎旎完成签到,获得积分10
刚刚
lemon完成签到,获得积分10
刚刚
853225598完成签到,获得积分10
1秒前
yyy完成签到,获得积分10
1秒前
Anyemzl完成签到,获得积分10
2秒前
绵绵球完成签到,获得积分0
2秒前
建丰完成签到,获得积分10
2秒前
2秒前
ZhouYW应助飘逸澜采纳,获得10
2秒前
明理从露完成签到 ,获得积分10
3秒前
万能图书馆应助至黎采纳,获得10
3秒前
迎南完成签到,获得积分10
3秒前
Jzhang完成签到,获得积分10
3秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
4秒前
凯凯搞科研完成签到,获得积分10
4秒前
4秒前
韩龙飞完成签到,获得积分10
4秒前
majf完成签到,获得积分10
5秒前
5秒前
yanny完成签到,获得积分10
6秒前
充电宝应助ch采纳,获得10
6秒前
淋湿巴黎完成签到,获得积分10
7秒前
三叶草完成签到,获得积分10
7秒前
ENG完成签到,获得积分10
8秒前
liangmh完成签到,获得积分10
9秒前
dm完成签到,获得积分10
9秒前
orixero应助冷语采纳,获得10
10秒前
ABC2023发布了新的文献求助10
11秒前
温超完成签到,获得积分10
11秒前
11秒前
gaberella完成签到,获得积分10
12秒前
呜呼啦呼完成签到 ,获得积分10
13秒前
真理完成签到,获得积分10
13秒前
乔乔完成签到,获得积分10
13秒前
916应助检测王采纳,获得10
13秒前
14秒前
leslie完成签到,获得积分10
14秒前
科研通AI5应助lkl采纳,获得10
14秒前
陆柒子完成签到,获得积分10
15秒前
qizhixu完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642