亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of the application of deep learning in obesity: From early prediction aid to advanced management assistance

背景(考古学) 肥胖 肥胖管理 斯科普斯 医学 人工智能 计算机科学 梅德林 数据科学 机器学习 减肥 病理 政治学 地理 考古 法学
作者
X. Yi,Yangzhige He,Shan Gao,Ming Li
出处
期刊:Diabetes and Metabolic Syndrome: Clinical Research and Reviews [Elsevier BV]
卷期号:18 (4): 103000-103000 被引量:3
标识
DOI:10.1016/j.dsx.2024.103000
摘要

Obesity is a chronic disease which can cause severe metabolic disorders. Machine learning (ML) techniques, especially deep learning (DL), have proven to be useful in obesity research. However, there is a dearth of systematic reviews of DL applications in obesity. This article aims to summarize the current trend of DL usage in obesity research. An extensive literature review was carried out across multiple databases, including PubMed, Embase, Web of Science, Scopus, and Medline, to collate relevant studies published from January 2018 to September 2023. The focus was on research detailing the application of DL in the context of obesity. We have distilled critical insights pertaining to the utilized learning models, encompassing aspects of their development, principal results, and foundational methodologies. Our analysis culminated in the synthesis of new knowledge regarding the application of DL in the context of obesity. Finally, 40 research articles were included. The final collection of these research can be divided into three categories: obesity prediction (n = 16); obesity management (n = 13); and body fat estimation (n = 11). This is the first review to examine DL applications in obesity. It reveals DL's superiority in obesity prediction over traditional ML methods, showing promise for multi-omics research. DL also innovates in obesity management through diet, fitness, and environmental analyses. Additionally, DL improves body fat estimation, offering affordable and precise monitoring tools. The study is registered with PROSPERO (ID: CRD42023475159).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ylky完成签到 ,获得积分10
28秒前
30秒前
聂白晴发布了新的文献求助10
35秒前
W29完成签到 ,获得积分10
35秒前
1分钟前
1分钟前
1分钟前
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
小程同学发布了新的文献求助10
1分钟前
Lee发布了新的文献求助10
1分钟前
传奇3应助马帅帅采纳,获得10
1分钟前
Lee完成签到,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
huanger完成签到,获得积分10
1分钟前
聂白晴完成签到,获得积分10
1分钟前
科研通AI5应助聂白晴采纳,获得10
1分钟前
大渣饼完成签到 ,获得积分10
2分钟前
酸辣完成签到 ,获得积分10
2分钟前
2分钟前
Estrange发布了新的文献求助10
2分钟前
2分钟前
Estrange完成签到,获得积分20
2分钟前
我是老大应助lalalatiancai采纳,获得10
3分钟前
3分钟前
mingjie发布了新的文献求助10
3分钟前
凯凯完成签到 ,获得积分10
3分钟前
chaotianjiao完成签到 ,获得积分10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
mingjie发布了新的文献求助10
3分钟前
lalalatiancai发布了新的文献求助10
3分钟前
个性归尘给干之桃的求助进行了留言
3分钟前
lyq发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
义气雁完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456499
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251