Comparing serial and current liver stiffness measurements to predict decompensation in compensated advanced chronic liver disease patients

医学 内科学 失代偿 慢性肝病 胃肠病学 肝病 电流(流体) 肝硬化 心脏病学 工程类 电气工程
作者
Yu Jun Wong,Vincent Chen,Asim Abdulhamid,Giulia Tosetti,Huttakan Navadurong,Apichat Kaewdech,Jessica Cristiu,Michael Song,Pooja Devan,Kai Le Ashley Tiong,Jean Ee Neo,Thaninee Prasoppokakorn,Pimsiri Sripongpun,Catherine Stedman,Sombat Treeprasertsuk,Massimo Primignani,Jing Hieng Ngu,Juan G. Abraldeṣ
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
被引量:15
标识
DOI:10.1097/hep.0000000000000891
摘要

Background and Aims: The utility of serial liver stiffness measurements (LSM) to predict decompensation in patients with compensated advanced chronic liver disease (cACLD) remains unclear. We aimed to validate whether comparing serial LSM is superior to using the current LSM to predict liver-related events (LRE) in patients with cACLD. Approach and Results: In this retrospective analysis of an international registry, patients with cACLD and serial LSM were followed up until index LRE. We compared the performance of both the dynamic LSM changes and the current LSM in predicting LRE using Cox regression analysis, considering time zero of follow-up as the date of latest liver stiffness measurement. In all, 480 patients with cACLD with serial LSM were included from 5 countries. The commonest etiology of cACLD was viral (53%) and MASLD (34%). Over a median follow-up of 68 (IQR: 45 -92) months, 32% experienced a LSM decrease to levels below 10kPa (resolved cACLD) and 5.8% experienced LRE. Resolved cACLD were more likely to be nondiabetic and had better liver function. While a higher value of the current LSM was associated with higher LREs, LSM changes over time (LSM slope) were not associated with LRE. In multivariable Cox regression, neither the prior LSM nor the LSM slope added predictive value to latest liver stiffness measurement. Conclusions: Once the current LSM is known, previous LSM values do not add to the prediction of LREs in patients with cACLD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助lin采纳,获得10
刚刚
动听梨愁发布了新的文献求助10
1秒前
勤奋火龙果完成签到,获得积分20
2秒前
受伤的迎海完成签到,获得积分10
3秒前
4秒前
青柠完成签到,获得积分10
6秒前
orixero应助kmkz采纳,获得10
6秒前
小泥巴123发布了新的文献求助10
6秒前
8秒前
8秒前
hyx9504发布了新的文献求助10
9秒前
充电宝应助猛男航采纳,获得10
9秒前
华仔应助猛男航采纳,获得10
9秒前
隐形曼青应助猛男航采纳,获得10
9秒前
星辰大海应助猛男航采纳,获得10
9秒前
9秒前
小二郎应助猛男航采纳,获得10
9秒前
科研通AI6应助猛男航采纳,获得10
9秒前
李冰完成签到,获得积分10
9秒前
自然的秋尽完成签到 ,获得积分10
10秒前
111完成签到,获得积分10
10秒前
YE发布了新的文献求助30
11秒前
12秒前
小耗子完成签到,获得积分10
13秒前
Yangaaa发布了新的文献求助10
13秒前
半夏发布了新的文献求助10
15秒前
15秒前
15秒前
CipherSage应助GehaoZhang采纳,获得10
15秒前
可琴完成签到,获得积分10
16秒前
欢呼的夏山完成签到,获得积分10
17秒前
Mira_Liu发布了新的文献求助10
17秒前
9999发布了新的文献求助10
18秒前
余鱼发布了新的文献求助10
19秒前
pyb0919发布了新的文献求助10
19秒前
LR发布了新的文献求助20
20秒前
齐文轩发布了新的文献求助10
20秒前
Eliauk完成签到,获得积分10
21秒前
无限萃完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5083211
求助须知:如何正确求助?哪些是违规求助? 4300362
关于积分的说明 13399065
捐赠科研通 4124471
什么是DOI,文献DOI怎么找? 2258859
邀请新用户注册赠送积分活动 1263116
关于科研通互助平台的介绍 1197164