Estimation of Spatiotemporal Variability of Global Surface Ocean DIC Fields Using Ocean Color Remote Sensing Data

遥感 海洋色 海洋表面地形 地质学 海面温度 环境科学 大地测量学 气候学 卫星 物理 天文
作者
Ibrahim Shaik,Kande Vamsi Krishna,P. V. Nagamani,S. K. Begum,Palanisamy Shanmugam,Reema Mathew,Mahesh Pathakoti,Rajashree Vinod Bothale,Prakash Chauhan,Mohammed Osama
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:2
标识
DOI:10.1109/tgrs.2024.3390179
摘要

The estimation of dissolved inorganic carbon (DIC) in global surface ocean waters is crucial for understanding air-sea CO 2 flux rates, ocean acidification, and climate change. DIC magnitude and spatiotemporal variability are influenced by various physical and biogeochemical processes. Due to dynamic variations in ocean surface water, estimating DIC through in-situ data alone is challenging. Ocean color remote sensing offers high spatial and temporal resolution data with extensive synoptic views. Over decades, multiple DIC approaches have emerged using in-situ and satellite observations but are limited to specific regions due to improper model parameter selection and sparse in-situ measurements. To address this, we propose a novel Multi-Parametric Regression (MPR) approach that relates DIC as a function of sea surface temperature (SST), sea surface salinity (SSS), and chlorophyll-a (Chla) concentration. Utilizing in-situ data from the Global Ocean Data Analysis Project (GLODAP), trends of DIC with SST, SSS, and Chla were analyzed to develop MPR regression equations. The validation results indicated that the proposed regression approach accurately estimates DIC in global surface ocean waters. This approach offers benefits such as DIC estimates at any spatiotemporal resolutions, easy implementation, and cost-effective alternatives to in-situ measurements. Additionally, seasonal and inter-annual variations of global DIC fields were demonstrated through satellite oceanographic data, enhancing monitoring of ocean acidification and climate change scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助森距离采纳,获得10
3秒前
冷静芹菜完成签到 ,获得积分10
4秒前
Survivor发布了新的文献求助10
6秒前
miketyson完成签到,获得积分10
6秒前
7秒前
9秒前
桐桐应助ouwenwen采纳,获得10
10秒前
Survivor完成签到,获得积分10
10秒前
xiami应助刘先生采纳,获得10
11秒前
HEAUBOOK应助无敌小汐采纳,获得10
11秒前
whilers完成签到,获得积分10
11秒前
阳光完成签到 ,获得积分10
11秒前
文安发布了新的文献求助10
12秒前
已过完成签到,获得积分10
12秒前
绚濑绘里家的东条希关注了科研通微信公众号
12秒前
雪花君完成签到,获得积分10
12秒前
13秒前
13秒前
乐观的忆枫完成签到,获得积分10
15秒前
16秒前
18秒前
皇甫藏鸟发布了新的文献求助10
18秒前
Lucas应助开心采纳,获得10
18秒前
19秒前
建丰完成签到,获得积分10
21秒前
万能图书馆应助Miya_han采纳,获得10
21秒前
21秒前
22秒前
22秒前
内向宛凝发布了新的文献求助10
23秒前
学术大王发布了新的文献求助10
23秒前
淡水痕发布了新的文献求助10
24秒前
lighting完成签到 ,获得积分10
24秒前
ouwenwen发布了新的文献求助10
24秒前
bkagyin应助胡周瑜采纳,获得10
26秒前
坚强的乾完成签到,获得积分10
27秒前
27秒前
27秒前
27秒前
Jenna完成签到 ,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742