Vulnerability Detection Based on Enhanced Graph Representation Learning

计算机科学 图形 代表(政治) 人工智能 理论计算机科学 政治 政治学 法学
作者
Peng Xiao,Qibin Xiao,Xusheng Zhang,Yumei Wu,Fengyu Yang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5120-5135 被引量:3
标识
DOI:10.1109/tifs.2024.3392536
摘要

The detection of program vulnerabilities remains a challenging task in software security. The existing vulnerability detection methods rarely consider the multidimensional feature space complementarity of program graph structures, which easily overlooks contextual environment features and syntax structure features. This disadvantage leads to insufficient performance in capturing complex structural features, which hinders the improvement in detection accuracy. To address this issue, this paper introduces a novel vulnerability detection method, EnGS2F, which adopts the representation learning of an enhanced graph structure to improve the efficiency of capturing vulnerability information. On the dimension of the graph structure, a context relationship graph (CRG) is integrated on the basis of a program dependency graph (PDG) to enrich the global structural context representation. On the dimension of graph nodes, abstract syntax tree (AST) embedding and paragraph embedding are integrated to solve the problem of insufficient feature space complementarity. Moreover, the combination of a gated graph neural network (GGNN) with a graph attention mechanism further improves the learning performance of the enhanced graph structure. EnGS2F has been rigorously evaluated on program slices from open-source vulnerability datasets, demonstrating significant improvements over current competitive methods in detecting program vulnerabilities. Specifically, EnGS2F achieved a significant increase in the F1 score, outperforming existing technologies by 6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FF完成签到 ,获得积分10
1秒前
YanZ830完成签到,获得积分20
2秒前
3秒前
3秒前
moonzz发布了新的文献求助10
5秒前
tracyzhang完成签到 ,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
YanZ830发布了新的文献求助10
8秒前
852应助自信寄灵采纳,获得10
8秒前
9秒前
Hello应助俏皮凡梦采纳,获得10
9秒前
10秒前
Leeie03发布了新的文献求助10
10秒前
10秒前
11秒前
黄子腾发布了新的文献求助10
12秒前
方琼燕完成签到 ,获得积分10
12秒前
yaohoo发布了新的文献求助10
13秒前
金轩完成签到 ,获得积分10
13秒前
wzgkeyantong发布了新的文献求助10
15秒前
爆米花应助韓大侠采纳,获得20
16秒前
16秒前
16秒前
19秒前
共享精神应助wzgkeyantong采纳,获得30
20秒前
Ava应助wzgkeyantong采纳,获得10
20秒前
20秒前
21秒前
AAApril发布了新的文献求助10
21秒前
k123456应助于明玉采纳,获得10
21秒前
自信寄灵完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397