Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM

流入 鉴定(生物学) 能量(信号处理) 预警系统 遥感 环境科学 计算机科学 地质学 电信 海洋学 统计 植物 数学 生物
作者
Songlin Yang,Huiqing Lian,Mohamad Reza Soltanian,Bin Xu,Wei Liu,Hung Vo Thanh,Yarui Li,Huichao Yin,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:2
标识
DOI:10.1109/tgrs.2024.3384990
摘要

Promoting sustainable mining practices while safe-guarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the Self-Attention mechanism into the Long Short-Term Memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time-series models in terms of forecast precision, with a MAE of 21.8 m 3 /h, RMSE of 39.3 m 3 /h and MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景清完成签到,获得积分10
3秒前
紫禁城的雪天完成签到,获得积分10
3秒前
Andy发布了新的文献求助10
4秒前
李思超发布了新的文献求助220
8秒前
11秒前
任性的蝴蝶完成签到,获得积分10
11秒前
14秒前
Orange应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
14秒前
上官若男应助科研通管家采纳,获得20
14秒前
李健应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
Cat应助科研通管家采纳,获得50
15秒前
ding应助科研通管家采纳,获得30
15秒前
今后应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
CWNU_HAN应助科研通管家采纳,获得30
15秒前
上官若男应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
16秒前
16秒前
六月六发布了新的文献求助10
16秒前
科目三应助cs采纳,获得10
17秒前
王恒发布了新的文献求助10
19秒前
pluto应助SCI采纳,获得10
19秒前
ZUOSG发布了新的文献求助10
20秒前
27秒前
31秒前
31秒前
32秒前
ZUOSG完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778030
求助须知:如何正确求助?哪些是违规求助? 3323705
关于积分的说明 10215513
捐赠科研通 3038914
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339