亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Traffic Prediction at the ITS Edge With Online Models and Blockchain-Based Federated Learning

计算机科学 软件部署 杠杆(统计) 智能交通系统 深度学习 GSM演进的增强数据速率 延迟(音频) 分布式计算 边缘计算 实时计算 人工智能 工程类 运输工程 电信 操作系统
作者
Collin Meese,Hang Chen,Wanxin Li,Danielle Lee,Hao Guo,Chien‐Chung Shen,Mark Nejad
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 10725-10740 被引量:12
标识
DOI:10.1109/tits.2024.3391053
摘要

Managing urban traffic dynamics is critical in Intelligent Transportation Systems (ITS), where short-term traffic prediction is vital for effective congestion management and vehicle routing. While existing centralized deep learning (DL) models have achieved high prediction accuracy, their applicability is limited in decentralized ITS environments. The increasing use of connected vehicles and mobile sensors has led to decentralized data generation in ITS, presenting an opportunity to improve traffic prediction through collaborative machine learning. Recently, blockchain technology has shown promise in improving ITS efficiency, security, and reliability. In conjunction with blockchain, Federated Learning (FL) is a suitable approach to leverage online data streams in ITS; however, most research on FL for traffic prediction focuses on offline learning scenarios. This paper researches a blockchain-enhanced architecture for training online traffic prediction models using FL. The proposed approach enables decentralized model training at the edge of the ITS network, and extensive experiments used dynamically collected arterial traffic data shards as a case study to evaluate online learning performance. The results demonstrate that our online FL approach outperforms the per-device, non-federated baseline models for most sensors while maintaining a suitable execution time and latency for real-world deployment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
华仔应助一两二两三两斤采纳,获得10
3秒前
SciGPT应助王大壮采纳,获得10
6秒前
小白果果发布了新的文献求助10
7秒前
九星完成签到 ,获得积分10
14秒前
AX完成签到,获得积分10
30秒前
小鸟芋圆露露完成签到 ,获得积分10
34秒前
41秒前
47秒前
NexusExplorer应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
ceeray23应助科研通管家采纳,获得10
48秒前
ceeray23应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
bkagyin应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
51秒前
54秒前
FashionBoy应助机灵的幼菱采纳,获得10
54秒前
59秒前
西安浴日光能赵炜完成签到,获得积分10
59秒前
霸气剑通发布了新的文献求助10
1分钟前
大胆发布了新的文献求助10
1分钟前
爆米花应助霸气剑通采纳,获得10
1分钟前
decade发布了新的文献求助10
1分钟前
科研通AI6应助瀅瀅采纳,获得10
1分钟前
obito完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
4114发布了新的文献求助10
1分钟前
Nomb1发布了新的文献求助10
1分钟前
Rich_WH发布了新的文献求助10
1分钟前
1分钟前
怡然剑成完成签到 ,获得积分10
1分钟前
万能图书馆应助Nomb1采纳,获得10
1分钟前
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502750
求助须知:如何正确求助?哪些是违规求助? 4598475
关于积分的说明 14464193
捐赠科研通 4532042
什么是DOI,文献DOI怎么找? 2483808
邀请新用户注册赠送积分活动 1467025
关于科研通互助平台的介绍 1439644