Lossless image steganography: Regard steganography as super-resolution

隐写术 无损压缩 隐写工具 计算机科学 人工智能 计算机视觉 图像(数学) 数据压缩
作者
Tingqiang Wang,Hang Cheng,Ximeng Liu,Yongliang Xu,Fei Chen,Meiqing Wang,Jiaoling Chen
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (4): 103719-103719 被引量:4
标识
DOI:10.1016/j.ipm.2024.103719
摘要

Image steganography attempts to imperceptibly hide the secret image within the cover image. Most of the existing deep learning-based steganography approaches have excelled in payload capacity, visual quality, and steganographic security. However, they are difficult to losslessly reconstruct secret images from stego images with relatively large payload capacity. Recently, although some studies have introduced invertible neural networks (INNs) to achieve large-capacity image steganography, these methods still cannot reconstruct the secret image losslessly due to the existence of lost information on the output side of the concealing network. We present an INN-based framework in this paper for lossless image steganography. Specifically, we regard image steganography as an image super-resolution task that converts low-resolution cover images to high-resolution stego images while hiding secret images. The feature dimension of the generated stego image matches the total dimension of the input secret and cover images, thereby eliminating the lost information. Besides, a bijective secret projection module is designed to transform various secret images into a latent variable that follows a simple distribution, improving the imperceptibility of the secret image. Comprehensive experiments indicate that the proposed framework achieves secure hiding and lossless extraction of the secret image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
玖若辰发布了新的文献求助10
2秒前
2秒前
共享精神应助苏杉杉采纳,获得10
2秒前
lily发布了新的文献求助10
2秒前
3秒前
科研通AI5应助不低头采纳,获得10
4秒前
jack发布了新的文献求助10
4秒前
小王完成签到,获得积分10
5秒前
Ava应助赢赢采纳,获得10
5秒前
调皮帆布鞋完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
someone发布了新的文献求助10
6秒前
6秒前
超级的雁山应助聪聪冲冲采纳,获得20
6秒前
7秒前
深情安青应助动人的成威采纳,获得10
7秒前
HI完成签到 ,获得积分10
8秒前
Benjamin发布了新的文献求助10
8秒前
Summer完成签到,获得积分10
8秒前
田様应助风光旖旎采纳,获得10
8秒前
aaaa完成签到,获得积分10
9秒前
9秒前
小马甲应助lily采纳,获得10
10秒前
起风了777完成签到,获得积分10
10秒前
刘小孩发布了新的文献求助30
10秒前
hh发布了新的文献求助10
10秒前
10秒前
10秒前
万能图书馆应助陈帅采纳,获得10
11秒前
科研通AI5应助cc采纳,获得10
11秒前
Rmshuang应助yaoyao采纳,获得10
12秒前
13秒前
三两白菜完成签到,获得积分10
13秒前
14秒前
welbeck完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804835
求助须知:如何正确求助?哪些是违规求助? 3349925
关于积分的说明 10346344
捐赠科研通 3065759
什么是DOI,文献DOI怎么找? 1683265
邀请新用户注册赠送积分活动 808800
科研通“疑难数据库(出版商)”最低求助积分说明 764915