Underwater Image Enhancement Based on Multichannel Adaptive Compensation

水下 补偿(心理学) 计算机科学 人工智能 电子工程 计算机视觉 地质学 工程类 海洋学 心理学 精神分析
作者
Hu Qiang,Yuzhong Zhong,Yuqi Zhu,Xuke Zhong,Quan Xiao,Songyi Dian
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2024.3378290
摘要

Due to underwater light absorption and scattering, underwater images often suffer from color distortion and low contrast. However, existing underwater image enhancement methods can only solve the problem of underwater image degradation in a specific scene, and do not consider the impact of dynamic changes in water depth and water quality on underwater image degradation. In order to solve the above problems, this paper proposes a multi-channel adaptive fusion underwater image enhancement algorithm. Firstly, in order to alleviate the color distortion issue caused by light attenuation, this paper proposes a gridded adaptive channel compensation algorithm. Subsequently, the compensated image is used for multi-channel image enhancement. The first channel image is the enhanced result of the compensated image using the local entropy-constrained gray world algorithm proposed in this paper and the second channel image is the enhanced result of the first channel image using the contrast limited adaptive histogram equalization(CLAHE) algorithm. Next, the saliency weight image and brightness weight image of the two-channel images are calculated respectively. Finally, in order to combine the information advantages of different channel images, this paper adopts Laplacian-Gaussian pyramid to fuse the two-channel enhanced images and their corresponding weight images to obtain the final enhanced image. Experiments on three datasets, LSUI, UIEB and RUIE, show that the underwater images processed by the algorithm proposed in this paper have a good improvement in color and contrast, and robustness is better than the comparative methods. The UIQM value of the enhanced images is 126.844% higher than the original images, the UCIQE value is 66.370% higher than the original images, and the number of ORB feature points is 95.862% higher than the original images. Results available at https://drive.google.com/file.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuzao发布了新的文献求助10
刚刚
温柔又莲完成签到 ,获得积分10
1秒前
小虫学长应助冷山采纳,获得20
6秒前
9秒前
咪咪完成签到,获得积分20
9秒前
11秒前
yuzao完成签到,获得积分10
12秒前
玛卡巴卡完成签到 ,获得积分10
15秒前
酷波er应助chaos采纳,获得10
17秒前
思源应助zhinian28采纳,获得10
19秒前
周em12_完成签到,获得积分10
21秒前
mumu完成签到,获得积分10
21秒前
小雯钱来完成签到,获得积分10
24秒前
晨曦完成签到 ,获得积分10
25秒前
25秒前
多多完成签到,获得积分10
26秒前
多多发布了新的文献求助10
29秒前
小杨完成签到 ,获得积分10
30秒前
Chen完成签到,获得积分10
32秒前
34秒前
35秒前
35秒前
38秒前
小莫发布了新的文献求助10
40秒前
40秒前
大方弘文发布了新的文献求助10
42秒前
45秒前
Tohka完成签到 ,获得积分10
47秒前
大个应助Goro采纳,获得10
47秒前
我爱康康文献完成签到 ,获得积分10
47秒前
香蕉觅云应助六沉采纳,获得10
48秒前
48秒前
48秒前
AOPs完成签到,获得积分10
50秒前
黑布林大李子完成签到,获得积分0
52秒前
52秒前
54秒前
zhinian28发布了新的文献求助10
54秒前
ED应助AnitaAdal采纳,获得10
55秒前
迷人世开完成签到,获得积分0
56秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816980
求助须知:如何正确求助?哪些是违规求助? 3360427
关于积分的说明 10407756
捐赠科研通 3078348
什么是DOI,文献DOI怎么找? 1690731
邀请新用户注册赠送积分活动 814032
科研通“疑难数据库(出版商)”最低求助积分说明 767985