Confidence-Weighted Dual-Teacher Networks With Biased Contrastive Learning for Semi-Supervised Semantic Segmentation in Remote Sensing Images

计算机科学 人工智能 分割 对偶(语法数字) 图像分割 模式识别(心理学) 自然语言处理 遥感 计算机视觉 地质学 文学类 艺术
作者
Yi Xin,Zide Fan,Xiyu Qi,Yidan Zhang,Xinming Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2024.3376352
摘要

Semantic segmentation of remote sensing images is vital in remote sensing technology. High-quality models for this task require a vast amount of images, manual annotation is a process that is time-consuming and labor-intensive. Consequently, this has catalyzed the emergence of semi-supervised semantic segmentation methods. However, the complexity of foreground categories in remote sensing images poses a challenge to maintaining prediction consistency. Moreover, inherent characteristics such as intra-class variations and inter-class similarities result in a certain degree of confusion among features of different classes in the feature space. This impacts the final classification results. In order to improve the model's consistency and optimize the classification of categories based on features, this paper proposes a new semi-supervised semantic segmentation framework that combines consistency regularization and contrastive learning. In terms of consistency regularization, the proposed method incorporates dual teacher networks, introduces ClassMix for image augmentation, and utilizes confidence levels to integrate the predictions from these networks. By introducing perturbations at both the network and image levels, while simultaneously maintaining consistency, the predictive prowess and generalization ability of the model are enhanced. For contrastive learning, Postive-Unlabeled Learning (PU-Learning) is employed to improve the problem of mis-sampling when selecting features. At the same time, higher biased weights are allocated to more challenging negative samples, thereby elevating the complexity of feature learning and enhancing the discriminative capability of the final feature representation space. Our extensive experiments on the ISPRS Vaihingen dataset and the challenging iSAID dataset have served to underscore the superior performance of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小九完成签到,获得积分10
刚刚
科研通AI5应助张晓倩采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
柏林寒冬应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
情怀应助雪花采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
star应助科研通管家采纳,获得10
1秒前
yun789完成签到,获得积分10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
狂野傲珊发布了新的文献求助50
1秒前
2秒前
zcl应助科研通管家采纳,获得50
2秒前
zz应助科研通管家采纳,获得50
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
明天完成签到,获得积分10
3秒前
H_HUAHUI完成签到,获得积分10
3秒前
bilibalaa完成签到 ,获得积分10
3秒前
搜集达人应助朴素青雪采纳,获得10
4秒前
liutongshun完成签到,获得积分10
4秒前
周雪艳完成签到,获得积分10
5秒前
5秒前
5秒前
侠客发布了新的文献求助10
5秒前
5秒前
5秒前
孟器应助wocao采纳,获得10
6秒前
陶醉小笼包完成签到 ,获得积分10
6秒前
活力的妙芙完成签到,获得积分10
6秒前
6秒前
6秒前
若木完成签到,获得积分10
7秒前
7秒前
7秒前
浮游应助曈梦采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068354
求助须知:如何正确求助?哪些是违规求助? 4289934
关于积分的说明 13365813
捐赠科研通 4109719
什么是DOI,文献DOI怎么找? 2250474
邀请新用户注册赠送积分活动 1255837
关于科研通互助平台的介绍 1188347