Unveiling the Reaction Mechanism of Nitrate Reduction to Ammonia Over Cobalt-Based Electrocatalysts

硝酸盐 机制(生物学) 氨生产 还原(数学) 化学 反应机理 无机化学 环境化学 催化作用 有机化学 几何学 数学 认识论 哲学
作者
Kaiwen Yang,Shuhe Han,Chuanqi Cheng,Chengying Guo,Tieliang Li,Yifu Yu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (19): 12976-12983 被引量:185
标识
DOI:10.1021/jacs.3c13517
摘要

Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyijing关注了科研通微信公众号
刚刚
碧蓝邪欢完成签到,获得积分10
1秒前
GGB发布了新的文献求助10
1秒前
2秒前
Steve完成签到,获得积分10
2秒前
2秒前
可爱的函函应助左右采纳,获得10
3秒前
3秒前
CodeCraft应助呆呆采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
学习使我快乐完成签到,获得积分10
4秒前
sdh完成签到,获得积分10
4秒前
4秒前
zgrmws给自信的水蜜桃的求助进行了留言
5秒前
脑洞疼应助kkkk采纳,获得10
5秒前
sfwrbh完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
科研通AI2S应助lean采纳,获得10
6秒前
小蘑菇应助paltte采纳,获得10
6秒前
7秒前
7秒前
wss发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
hbutsj发布了新的文献求助10
10秒前
11秒前
文献发布了新的文献求助10
11秒前
xiaohe发布了新的文献求助10
11秒前
我爱科研科研爱我应助呢n采纳,获得30
11秒前
11秒前
11秒前
12秒前
JJJLX发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662283
求助须知:如何正确求助?哪些是违规求助? 4841521
关于积分的说明 15099027
捐赠科研通 4820705
什么是DOI,文献DOI怎么找? 2580125
邀请新用户注册赠送积分活动 1534268
关于科研通互助平台的介绍 1492947