A Fusion Network with Stacked Denoise Autoencoder and Meta Learning for Lateral Walking Gait Phase Recognition and Multi-Step-Ahead Prediction

人工智能 步态 计算机科学 模式识别(心理学) 均方误差 自编码 支持向量机 步态分析 人工神经网络 机器学习 数学 物理医学与康复 统计 医学
作者
Wujing Cao,Changyu Li,Lijun Yang,Meng Yin,Chunjie Chen,Worawarit Kobsiriphat,T. Utakapan,Yizhuang Yang,Haoyong Yu,Xinyu Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3380099
摘要

Lateral walking gait phase recognition and prediction are the premise of hip exoskeleton application in lateral resistance walk exercise. In this work, we presented a fusion network with stacked denoise autoencoder and meta learning (SDA-NN-ML) to recognize gait phase and predict gait percentage from IMU signals. Experiments were conducted to detect the four lateral walking gait phases and predict their percentage in 10 healthy subjects across different speeds. The performance of SDA-NN-ML and other widely used algorithms including Support Vector Machine (SVM), Adaptive Boosting (AdaBoost) and Long Short Term Memory (LSTM) were evaluated. The cross-subject recognition accuracy of SDA-NN-ML (89.94%) decreased by 4.62% compared to the training accuracy, which outperformed SVM (8.60%), AdaBoost (5.61%), and LSTM (7.12%). For real-time and cross-subject prediction of gait phase percentage, the RMSE of SDA-NN-ML (0.2043) outperformed that of a single regression network (0.2426). With a signal noise ratio of 100:30, the cross-subject recognition accuracy decreased by a mere 5.70%, while the prediction result (RMSE) of SDA-NN-ML increased by 0.0167 when compared to the noise-free results. SDA-NN-ML demonstrates a stable multi-step-ahead prediction ability with an accuracy higher than 82.50% and an RMSE of less than 0.23 when the ahead time is less than 200 ms. The results demonstrated that the proposed method has high accuracy and robust performance in lateral walking gait recognition and prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助haooo采纳,获得20
刚刚
Lee完成签到,获得积分10
刚刚
壮观采文应助Dreamable采纳,获得10
1秒前
2秒前
慕青应助随机采纳,获得10
2秒前
woodenfish发布了新的文献求助10
2秒前
快去吃蛋糕完成签到,获得积分10
2秒前
秋秋发布了新的文献求助20
2秒前
汉堡包应助66m37采纳,获得10
3秒前
luojiadream发布了新的文献求助10
3秒前
香蕉觅云应助跋扈采纳,获得10
3秒前
Lee发布了新的文献求助10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
hhppt应助科研通管家采纳,获得30
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
情怀应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得30
5秒前
Ava应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
英姑应助shangxinyu采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
美丽的小鸭子完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384736
求助须知:如何正确求助?哪些是违规求助? 3877864
关于积分的说明 12080142
捐赠科研通 3521341
什么是DOI,文献DOI怎么找? 1932428
邀请新用户注册赠送积分活动 973695
科研通“疑难数据库(出版商)”最低求助积分说明 871871