Use of artificial intelligence to enhance detection of nodal metastases

医学 淋巴结 癌症分期 阶段(地层学) 癌症 放射科 病理 内科学 古生物学 生物
作者
Reza Forghani
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:24 (4): 308-309 被引量:4
标识
DOI:10.1016/s1470-2045(23)00101-8
摘要

In oncology, the presence of lymph node metastases is one of the most important prognostic factors and its determination is an essential part of tumour staging. 1 Amin MB Greene FL Edge SB et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017; 67: 93-99 Crossref PubMed Scopus (2640) Google Scholar Before treatment, CT, MRI, ultrasound, and PET are the most common non-invasive techniques used for pretreatment cancer staging. However, despite the strengths of these techniques, their sensitivity for evaluation of early or micrometastases in small lymph nodes measuring less than 7–10 mm is low. 2 Compérat E Amin MB Cathomas R et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet. 2022; 400: 1712-1721 Summary Full Text Full Text PDF PubMed Scopus (16) Google Scholar , 3 Woolgar JA Scott J Prediction of cervical lymph node metastasis in squamous cell carcinoma of the tongue/floor of mouth. Head Neck. 1995; 17: 463-472 Crossref PubMed Scopus (212) Google Scholar As a result, for surgically treated diseases, the gold standard consists of pathological evaluation of resected nodal specimens. The final nodal stage is usually determined on the basis of histopathological evaluation of lymph nodes on pathology slides stained with haematoxylin and eosin, increasingly digitised into whole slide images. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic studyWe developed an AI-based diagnostic model that did well in detecting lymph node metastases, particularly micrometastases. The LNMDM showed substantial potential for clinical applications in improving the accuracy and efficiency of pathologists' work. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
快船总冠军完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
cwy发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助1234采纳,获得10
4秒前
4秒前
Dream发布了新的文献求助10
5秒前
光亮青柏完成签到 ,获得积分10
6秒前
nini发布了新的文献求助10
6秒前
cwy发布了新的文献求助10
7秒前
wsj发布了新的文献求助10
7秒前
木子发布了新的文献求助10
8秒前
吴zzzz发布了新的文献求助10
9秒前
阔达的柠檬完成签到 ,获得积分20
12秒前
高高兴兴完成签到,获得积分10
12秒前
俭朴的语琴完成签到,获得积分20
13秒前
冰魂应助lizhiqian2024采纳,获得10
17秒前
云yun发布了新的文献求助10
20秒前
kiki完成签到 ,获得积分10
20秒前
21秒前
kls完成签到,获得积分10
21秒前
General完成签到 ,获得积分10
23秒前
23秒前
小蘑菇应助吴zzzz采纳,获得10
24秒前
王倩完成签到 ,获得积分10
24秒前
科研通AI5应助程雯慧采纳,获得10
25秒前
章军发布了新的文献求助10
25秒前
kitwang发布了新的文献求助30
26秒前
27秒前
华仔应助YHDing采纳,获得10
27秒前
renyh2002完成签到,获得积分20
28秒前
火星上云朵完成签到 ,获得积分10
28秒前
勤恳化蛹完成签到 ,获得积分10
29秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781798
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230805
捐赠科研通 3042262
什么是DOI,文献DOI怎么找? 1669926
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804