How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 罗伊特 经济 数学分析 有机化学 化学 管理 程序设计语言 心理治疗师
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3512
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
亦74发布了新的文献求助10
1秒前
xchqb发布了新的文献求助10
1秒前
天天好心覃完成签到 ,获得积分10
2秒前
maoxiaogou完成签到,获得积分10
2秒前
wei发布了新的文献求助10
4秒前
Xiang完成签到,获得积分10
4秒前
端庄的孤风完成签到 ,获得积分10
5秒前
5秒前
6秒前
CCCCCL完成签到,获得积分10
6秒前
7秒前
方强完成签到 ,获得积分10
8秒前
大可完成签到 ,获得积分10
8秒前
LLL完成签到,获得积分10
8秒前
孙煜完成签到,获得积分10
8秒前
魁梧的盼望完成签到 ,获得积分10
9秒前
10秒前
充电宝应助阿虎采纳,获得10
10秒前
lhhssll完成签到 ,获得积分10
12秒前
发发发布了新的文献求助10
12秒前
北城发布了新的文献求助10
12秒前
13秒前
冰冰完成签到 ,获得积分10
14秒前
shelemi完成签到,获得积分10
15秒前
徐小锤发布了新的文献求助10
17秒前
xiaoze发布了新的文献求助10
17秒前
007完成签到,获得积分10
19秒前
君君完成签到,获得积分10
19秒前
xiaoze完成签到,获得积分10
21秒前
yubin.cao发布了新的文献求助10
24秒前
医院骑士完成签到,获得积分10
24秒前
wanci应助xchqb采纳,获得10
25秒前
北城完成签到,获得积分20
26秒前
机灵的海蓝完成签到,获得积分10
27秒前
28秒前
年轻葶完成签到,获得积分10
30秒前
汉堡包应助Dr空瓶氧气采纳,获得10
30秒前
paul52020完成签到,获得积分10
32秒前
思源应助yubin.cao采纳,获得10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307