Dynamic Effective Connectivity using Physiologically informed Dynamic Causal Model with Recurrent Units: A functional Magnetic Resonance Imaging simulation study

功能磁共振成像 动态功能连接 计算机科学 认知 杠杆(统计) 神经科学 人工智能 神经影像学 因果模型 机器学习 心理学 数学 统计
作者
Sayan Nag,Kâmil Uludağ
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media SA]
卷期号:17 被引量:6
标识
DOI:10.3389/fnhum.2023.1001848
摘要

Functional MRI (fMRI) is an indirect reflection of neuronal activity. Using generative biophysical model of fMRI data such as Dynamic Causal Model (DCM), the underlying neuronal activities of different brain areas and their causal interactions (i.e., effective connectivity) can be calculated. Most DCM studies typically consider the effective connectivity to be static for a cognitive task within an experimental run. However, changes in experimental conditions during complex tasks such as movie-watching might result in temporal variations in the connectivity strengths. In this fMRI simulation study, we leverage state-of-the-art Physiologically informed DCM (P-DCM) along with a recurrent window approach and discretization of the equations to infer the underlying neuronal dynamics and concurrently the dynamic (time-varying) effective connectivities between various brain regions for task-based fMRI. Results from simulation studies on 3- and 10-region models showed that functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) responses and effective connectivity time-courses can be accurately predicted and distinguished from faulty graphical connectivity models representing cognitive hypotheses. In summary, we propose and validate a novel approach to determine dynamic effective connectivity between brain areas during complex cognitive tasks by combining P-DCM with recurrent units.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科目三应助RC_Wang采纳,获得10
1秒前
Moko完成签到 ,获得积分10
1秒前
FG发布了新的文献求助10
1秒前
欣欣发布了新的文献求助10
2秒前
纳斯达克发布了新的文献求助10
3秒前
贾若彤完成签到 ,获得积分10
3秒前
WAMK发布了新的文献求助40
3秒前
大模型应助任性的水风采纳,获得30
3秒前
baihy完成签到,获得积分10
3秒前
七七完成签到,获得积分10
4秒前
superbada发布了新的文献求助10
4秒前
娃娃菜完成签到,获得积分10
4秒前
汪侠完成签到,获得积分10
5秒前
宇宙完成签到,获得积分20
5秒前
5秒前
5秒前
小蘑菇应助ziyue采纳,获得10
5秒前
科目三应助lhy采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
fox199753206完成签到,获得积分10
8秒前
NexusExplorer应助七yy采纳,获得10
9秒前
9秒前
Lucas应助vv采纳,获得10
9秒前
superbada完成签到,获得积分10
9秒前
dilli完成签到 ,获得积分0
10秒前
天天快乐应助mmccc1采纳,获得30
10秒前
烨无殇完成签到,获得积分10
11秒前
深情安青应助风中的觅风采纳,获得10
11秒前
11秒前
李爱国应助YYL采纳,获得10
11秒前
专一的白完成签到,获得积分10
11秒前
小郭同学完成签到,获得积分10
11秒前
YY发布了新的文献求助30
11秒前
12秒前
FG完成签到,获得积分10
12秒前
Ehgnix完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647245
求助须知:如何正确求助?哪些是违规求助? 4773101
关于积分的说明 15038498
捐赠科研通 4805952
什么是DOI,文献DOI怎么找? 2570026
邀请新用户注册赠送积分活动 1526936
关于科研通互助平台的介绍 1485992