化学
稻草
镉
厚壁菌
环境化学
蛋白质细菌
农学
生物
生物化学
无机化学
有机化学
16S核糖体RNA
基因
作者
Qian Cai,Min Xu,Jing Ma,Xiaohong Zhang,Gang Yang,Lulu Long,Chao Chen,Jun Wu,Chun Song,Yinlong Xiao
标识
DOI:10.1016/j.scitotenv.2023.162594
摘要
Cadmium (Cd) in paddy soil can be immobilized via microbially induced carbonate precipitation (MICP), but it poses a risk to the properties and eco-function of the soil. In this study, rice straw coupled with Sporosarcina pasteurii (S. pasteurii) was used to treat Cd-contaminated paddy soil with minimizing the detrimental effects of MICP. Results showed that the application of rice straw coupled with S. pasteurii reduced Cd bioavailability. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed that Cd immobilization efficiency was increased in the rice straw coupled with S. pasteurii treatment via co-precipitating with CaCO3. Moreover, rice straw coupled with S. pasteurii enhanced soil fertility and ecological functions as reflected by the high amount of alkaline hydrolysis nitrogen (AN) (14.9 %), available phosphorus (AP) (13.6 %), available potassium (AK) (60.0 %), catalase (9.95 %), dehydrogenase (736 %), and phosphatase (214 %). Further, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased when applying both rice straw coupled with S. pasteurii. The most significant environmental factors that affected the composition of the bacterial community were AP (41.2 %), phosphatase (34.2 %), and AK (8.60 %). In conclusion, using rice straw mixed with S. pasteurii is a promising application to treat Cd-contaminated paddy soil due to its positive effects on treating soil Cd as well as its ability to reduce the detrimental effects of the MICP process.
科研通智能强力驱动
Strongly Powered by AbleSci AI