Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies

脂肪肝 Lasso(编程语言) 肝细胞癌 特征(语言学) 支持向量机 脂肪性肝炎 疾病 弹性网正则化 生物标志物 人工智能 生物信息学 计算生物学 机器学习 计算机科学 医学 生物 内科学 特征选择 遗传学 万维网 哲学 语言学
作者
Zhaohui Zhang,Shihao Wang,Zhengwen Zhu,Biao Nie
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106724-106724 被引量:23
标识
DOI:10.1016/j.compbiomed.2023.106724
摘要

The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the "limma" package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
laihama完成签到,获得积分10
9秒前
9秒前
huangJP完成签到,获得积分10
13秒前
土豪的铭完成签到,获得积分20
14秒前
16秒前
环秋完成签到,获得积分10
17秒前
67完成签到 ,获得积分10
17秒前
18秒前
脑洞疼应助博修采纳,获得10
21秒前
呆萌刺猬完成签到 ,获得积分10
21秒前
过时的电灯胆完成签到 ,获得积分10
25秒前
26秒前
之贻完成签到,获得积分10
28秒前
123666完成签到,获得积分10
29秒前
Ying完成签到,获得积分10
30秒前
31秒前
科研小李完成签到,获得积分10
31秒前
31秒前
35秒前
百合花开发布了新的文献求助10
37秒前
38秒前
Pursue完成签到,获得积分10
39秒前
喜乐发布了新的文献求助10
40秒前
橙子完成签到,获得积分20
41秒前
小二郎应助科研通管家采纳,获得10
43秒前
yaya应助科研通管家采纳,获得10
43秒前
无花果应助科研通管家采纳,获得10
43秒前
在水一方应助科研通管家采纳,获得10
43秒前
Akim应助科研通管家采纳,获得10
43秒前
cdercder应助科研通管家采纳,获得20
44秒前
cdercder应助科研通管家采纳,获得10
44秒前
彩色草莓发布了新的文献求助50
44秒前
小皮皮完成签到,获得积分10
48秒前
48秒前
51秒前
52秒前
博修发布了新的文献求助10
53秒前
54秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445