脑-机接口
判别式
计算机科学
学习迁移
校准
接口(物质)
人工智能
任务(项目管理)
机器学习
传输(计算)
信息传递
噪音(视频)
信号(编程语言)
语音识别
模式识别(心理学)
脑电图
工程类
数学
心理学
系统工程
程序设计语言
并行计算
统计
最大气泡压力法
精神科
电信
图像(数学)
气泡
作者
Peitao Wang,Jun Lu,Bin Zhang,Zeng Tang
标识
DOI:10.1109/icist.2015.7288989
摘要
Due to the non-stationarity nature and poor signal-to-noise ratio (SNR) of brain signals, repeated time-consuming calibration is one of the biggest problems for today's brain-computer interfaces (BCIs). In order to reduce calibration time, many transfer learning methods have been proposed to extract discriminative or stationary information from other subjects or prior sessions for target classification task. In this paper, we review the existing transfer learning methods used for BCI classification problems and organize them into three cases based on different transfer strategies. Besides, we list the datasets used in these BCI studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI