Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: summary of results from the Medical Outcomes Study.

心理健康 SF-36型 医学 比例(比率) 萧条(经济学) 考试(生物学) 多元统计 临床心理学 心理学 统计 疾病 精神科 内科学 数学 健康相关生活质量 古生物学 物理 量子力学 生物 经济 宏观经济学
作者
John E. Ware,Mark Kosinski,Martha Bayliss,Colleen A. McHorney,William H. Rogers,Anastasia E. Raczek
出处
期刊:PubMed 卷期号:33 (4 Suppl): AS264-79 被引量:1728
链接
标识
摘要

Physical component summary (PCS) and mental component summary (MCS) measures make it possible to reduce the number of statistical comparisons and thereby the role of chance in testing hypotheses about health outcomes. To test their usefulness relative to a profile of eight scores, results were compared across 16 tests involving patients (N = 1,440) participating in the Medical Outcomes Study. Comparisons were made between groups known to differ at a point in time or to change over time in terms of age, diagnosis, severity of disease, comorbid conditions, acute symptoms, self-reported changes in health, and recovery from clinical depression. The relative validity (RV) of each measure was estimated by a comparison of statistical results with those for the best scales in the same tests. Differences in RV among scales from the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) were consistent with those in previous studies. One or both of the summary measures were significant for 14 of 15 differences detected in multivariate analyses of profiles and detected differences missed by the profile in one test. Relative validity coefficients ranged from .20 to .94 (median, .79) for PCS in tests involving physical criteria and from .93 to 1.45 (median, 1.02) for MCS in tests involving mental criteria. The MCS was superior to the best SF-36 scale in three of four tests involving mental health. Results suggest that the two summary measures may be useful in most studies and that their empiric validity, relative to the best SF-36 scale, will depend on the application. Surveys offering the option of analyzing both a profile and psychometrically based summary measures have an advantage over those that do not.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助LYF采纳,获得10
刚刚
刚刚
DavidXie完成签到,获得积分10
1秒前
凉小远发布了新的文献求助10
1秒前
刘昌虎发布了新的文献求助10
1秒前
橘柚发布了新的文献求助10
1秒前
852应助RocketRat采纳,获得10
2秒前
2秒前
彭于彦祖应助月蚀六花采纳,获得30
3秒前
maidang发布了新的文献求助10
3秒前
王菁炫完成签到,获得积分10
3秒前
Sg完成签到,获得积分10
3秒前
天天发布了新的文献求助20
3秒前
lynn221204发布了新的文献求助10
3秒前
三点水完成签到,获得积分10
4秒前
大模型应助硫磺椒采纳,获得10
4秒前
吴欣欣完成签到,获得积分10
4秒前
汉堡包应助CJYY采纳,获得10
5秒前
斯文败类应助师大六神采纳,获得10
5秒前
5秒前
狂野的驳发布了新的文献求助10
5秒前
5秒前
halo完成签到 ,获得积分10
6秒前
6秒前
Mei完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
李爱国应助刘昌虎采纳,获得10
7秒前
Fan完成签到,获得积分10
7秒前
啦啦发布了新的文献求助10
7秒前
zora完成签到,获得积分10
7秒前
王足各完成签到,获得积分10
7秒前
李健应助啊楠采纳,获得10
8秒前
爱吃巧乐兹完成签到,获得积分10
8秒前
小蘑菇应助oak采纳,获得10
8秒前
yiyi完成签到 ,获得积分10
9秒前
加油加油发布了新的文献求助10
9秒前
9秒前
10秒前
鱼湘完成签到,获得积分10
10秒前
ldk完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066