Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models

前列腺癌 磁共振成像 计算机科学 人工智能 特征选择 特征(语言学) 支持向量机 模式识别(心理学) 医学 癌症 放射科 语言学 哲学 内科学
作者
Farzad Khalvati,Alexander Wong,Masoom A. Haider
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:15 (1) 被引量:159
标识
DOI:10.1186/s12880-015-0069-9
摘要

Prostate cancer is the most common form of cancer and the second leading cause of cancer death in North America. Auto-detection of prostate cancer can play a major role in early detection of prostate cancer, which has a significant impact on patient survival rates. While multi-parametric magnetic resonance imaging (MP-MRI) has shown promise in diagnosis of prostate cancer, the existing auto-detection algorithms do not take advantage of abundance of data available in MP-MRI to improve detection accuracy. The goal of this research was to design a radiomics-based auto-detection method for prostate cancer via utilizing MP-MRI data.In this work, we present new MP-MRI texture feature models for radiomics-driven detection of prostate cancer. In addition to commonly used non-invasive imaging sequences in conventional MP-MRI, namely T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-MRI texture feature models incorporate computed high-b DWI (CHB-DWI) and a new diffusion imaging modality called correlated diffusion imaging (CDI). Moreover, the proposed texture feature models incorporate features from individual b-value images. A comprehensive set of texture features was calculated for both the conventional MP-MRI and new MP-MRI texture feature models. We performed feature selection analysis for each individual modality and then combined best features from each modality to construct the optimized texture feature models.The performance of the proposed MP-MRI texture feature models was evaluated via leave-one-patient-out cross-validation using a support vector machine (SVM) classifier trained on 40,975 cancerous and healthy tissue samples obtained from real clinical MP-MRI datasets. The proposed MP-MRI texture feature models outperformed the conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy.Comprehensive texture feature models were developed for improved radiomics-driven detection of prostate cancer using MP-MRI. Using a comprehensive set of texture features and a feature selection method, optimal texture feature models were constructed that improved the prostate cancer auto-detection significantly compared to conventional MP-MRI texture feature models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyzhou完成签到 ,获得积分10
1秒前
令人秃头发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
一颗苹果完成签到,获得积分10
3秒前
4秒前
坦率惊蛰完成签到,获得积分10
4秒前
等等发布了新的文献求助10
4秒前
浪客完成签到 ,获得积分10
6秒前
九九发布了新的文献求助10
7秒前
7秒前
一颗苹果发布了新的文献求助10
7秒前
NexusExplorer应助贪玩正豪采纳,获得10
8秒前
英俊梦玉发布了新的文献求助10
8秒前
脑洞疼应助Condor采纳,获得10
9秒前
隐形曼青应助等等采纳,获得10
9秒前
松松发布了新的文献求助30
9秒前
慕青应助科研通管家采纳,获得10
10秒前
孙燕应助科研通管家采纳,获得50
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
Dado应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
鸣笛应助科研通管家采纳,获得20
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
天晴应助魈玖采纳,获得10
13秒前
15秒前
16秒前
18秒前
18秒前
VLH发布了新的文献求助10
19秒前
阳光照完成签到,获得积分10
20秒前
皮凡完成签到,获得积分10
20秒前
Raphael Zhang发布了新的文献求助10
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4116668
求助须知:如何正确求助?哪些是违规求助? 3655161
关于积分的说明 11573999
捐赠科研通 3358411
什么是DOI,文献DOI怎么找? 1844847
邀请新用户注册赠送积分活动 910438
科研通“疑难数据库(出版商)”最低求助积分说明 826945