亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma

医学 头颈部 头颈部鳞状细胞癌 基底细胞 鳞状细胞癌 鉴定(生物学) 肿瘤科 内科学 头颈部癌 放射科 病理 放射治疗 外科 植物 生物
作者
Benjamin H. Kann,D.F. Hicks,Seyedmehdi Payabvash,Amit Mahajan,Justin Du,Vishal Gupta,Henry S. Park,James B. Yu,Wendell G. Yarbrough,Barbara Burtness,Zain Husain,Sanjay Aneja
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:38 (12): 1304-1311 被引量:138
标识
DOI:10.1200/jco.19.02031
摘要

PURPOSE Extranodal extension (ENE) is a well-established poor prognosticator and an indication for adjuvant treatment escalation in patients with head and neck squamous cell carcinoma (HNSCC). Identification of ENE on pretreatment imaging represents a diagnostic challenge that limits its clinical utility. We previously developed a deep learning algorithm that identifies ENE on pretreatment computed tomography (CT) imaging in patients with HNSCC. We sought to validate our algorithm performance for patients from a diverse set of institutions and compare its diagnostic ability to that of expert diagnosticians. METHODS We obtained preoperative, contrast-enhanced CT scans and corresponding pathology results from two external data sets of patients with HNSCC: an external institution and The Cancer Genome Atlas (TCGA) HNSCC imaging data. Lymph nodes were segmented and annotated as ENE-positive or ENE-negative on the basis of pathologic confirmation. Deep learning algorithm performance was evaluated and compared directly to two board-certified neuroradiologists. RESULTS A total of 200 lymph nodes were examined in the external validation data sets. For lymph nodes from the external institution, the algorithm achieved an area under the receiver operating characteristic curve (AUC) of 0.84 (83.1% accuracy), outperforming radiologists’ AUCs of 0.70 and 0.71 ( P = .02 and P = .01). Similarly, for lymph nodes from the TCGA, the algorithm achieved an AUC of 0.90 (88.6% accuracy), outperforming radiologist AUCs of 0.60 and 0.82 ( P < .0001 and P = .16). Radiologist diagnostic accuracy improved when receiving deep learning assistance. CONCLUSION Deep learning successfully identified ENE on pretreatment imaging across multiple institutions, exceeding the diagnostic ability of radiologists with specialized head and neck experience. Our findings suggest that deep learning has utility in the identification of ENE in patients with HNSCC and has the potential to be integrated into clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
duang完成签到,获得积分10
1分钟前
可靠的白竹完成签到 ,获得积分10
1分钟前
汉堡包应助Willing采纳,获得10
1分钟前
tongtong555完成签到 ,获得积分10
2分钟前
Lucas应助VDC采纳,获得30
2分钟前
Hello应助我要吃鱼阿采纳,获得10
3分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
英喆完成签到 ,获得积分10
4分钟前
4分钟前
cty完成签到,获得积分10
5分钟前
2306520完成签到,获得积分10
5分钟前
5分钟前
马放南山发布了新的文献求助50
5分钟前
5分钟前
冷冷子发布了新的文献求助10
5分钟前
Hello应助冷冷子采纳,获得10
5分钟前
冷冷子完成签到,获得积分10
5分钟前
6分钟前
Akim应助斯文的寄琴采纳,获得10
6分钟前
6分钟前
Cyris完成签到,获得积分10
6分钟前
六六完成签到 ,获得积分10
6分钟前
6分钟前
斯文的寄琴完成签到,获得积分20
7分钟前
7分钟前
7分钟前
7分钟前
机智的孤兰完成签到 ,获得积分10
7分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
木子木木夕完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
我要吃鱼阿完成签到,获得积分10
9分钟前
缓慢破茧应助昂帕帕斯采纳,获得10
9分钟前
Criminology34应助ccm采纳,获得10
9分钟前
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5221751
求助须知:如何正确求助?哪些是违规求助? 4394777
关于积分的说明 13680781
捐赠科研通 4258196
什么是DOI,文献DOI怎么找? 2336583
邀请新用户注册赠送积分活动 1334098
关于科研通互助平台的介绍 1288961