An Intelligent Particle Filter With Adaptive M-H Resampling for Liquid-Level Estimation During Silicon Crystal Growth

重采样 颗粒过滤器 算法 滤波器(信号处理) 噪音(视频) 计算机科学 数学 统计 材料科学 生物系统 数学优化 人工智能 计算机视觉 生物 图像(数学)
作者
Xinyu Zhang,Ding Liu,Yuan Yang,Junli Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:16
标识
DOI:10.1109/tim.2020.3026760
摘要

During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been presented to estimate the liquid level. However, this approach leads to inaccurate results due to sample impoverishment. To alleviate this problem, we propose an intelligent PF method with an adaptive Metropolis-Hastings (M-H) resampling strategy. To accomplish this, we first design an M-H resampling strategy with two proposed distributions to re-sample low-weight particles. These distributions randomly select high-weight particles for the Gaussian mutations or high-weight and low-weight particles for crossover operations, so as to promote the movement of low-weight particles to high-probability regions. We also construct a self-adaptive function to further improve the overall particle quality, which is used to calculate the selection probability of these two proposed distributions according to the proportion of low-weight particles in all of the particles. Finally, the liquid level is estimated according to the particles after the modified resampling strategy is applied. A comparative evaluation of the proposed method with the adaptive genetic particle filter (AGPF) and the firefly algorithm intelligence optimized particle filter (FAIOPF) is conducted. Some results of the simulation and the practical experiment are presented; they indicate the proposed method offers accuracy improvements in the liquid-level estimation during the silicon crystal growth. More specifically, compared with the AGPF and the FAIOPF, the mean absolute error (MAE) of the proposed method has been reduced by approximately 53.3% and 99.5%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meikinn发布了新的文献求助10
刚刚
飘逸蘑菇完成签到 ,获得积分10
刚刚
直率的心情完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助50
2秒前
王定春完成签到,获得积分10
3秒前
科研通AI2S应助nihaoxjm采纳,获得10
3秒前
6秒前
慕青应助shishuang采纳,获得10
7秒前
7秒前
飞虎完成签到,获得积分10
10秒前
Akim应助VESong采纳,获得10
11秒前
12秒前
physic发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
棕榈发布了新的文献求助10
14秒前
852应助sinlar采纳,获得10
14秒前
量子星尘发布了新的文献求助30
14秒前
李爱国应助VESong采纳,获得10
15秒前
桐桐应助激情的不弱采纳,获得10
15秒前
17秒前
土豪的龙猫应助大树采纳,获得10
17秒前
茉莉花发布了新的文献求助10
18秒前
英俊的铭应助shishuang采纳,获得10
19秒前
123发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
老艺人完成签到,获得积分10
22秒前
nnmmuu完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
时生发布了新的文献求助10
28秒前
登登完成签到,获得积分10
28秒前
是达达哦完成签到,获得积分10
28秒前
Youzi完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432