Deep Learning-Based Annotation Transfer between Molecular Imaging Modalities: An Automated Workflow for Multimodal Data Integration

质谱成像 计算机科学 工作流程 人工智能 背景(考古学) 模态(人机交互) 模式 深度学习 化学 数字化病理学 模式识别(心理学) 注释 质谱法 数据库 古生物学 社会学 生物 色谱法 社会科学
作者
Alan Race,Daniel Sutton,Grégory Hamm,Gareth Maglennon,Jennifer P. Morton,Nicole Strittmatter,Andrew D. Campbell,Owen J. Sansom,Yinhai Wang,Simon T. Barry,Zoltán Takáts,Richard J. A. Goodwin,Josephine Bunch
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (6): 3061-3071 被引量:39
标识
DOI:10.1021/acs.analchem.0c02726
摘要

An ever-increasing array of imaging technologies are being used in the study of complex biological samples, each of which provides complementary, occasionally overlapping information at different length scales and spatial resolutions. It is important to understand the information provided by one technique in the context of the other to achieve a more holistic overview of such complex samples. One way to achieve this is to use annotations from one modality to investigate additional modalities. For microscopy-based techniques, these annotations could be manually generated using digital pathology software or automatically generated by machine learning (including deep learning) methods. Here, we present a generic method for using annotations from one microscopy modality to extract information from complementary modalities. We also present a fast, general, multimodal registration workflow [evaluated on multiple mass spectrometry imaging (MSI) modalities, matrix-assisted laser desorption/ionization, desorption electrospray ionization, and rapid evaporative ionization mass spectrometry] for automatic alignment of complex data sets, demonstrating an order of magnitude speed-up compared to previously published work. To demonstrate the power of the annotation transfer and multimodal registration workflows, we combine MSI, histological staining (such as hematoxylin and eosin), and deep learning (automatic annotation of histology images) to investigate a pancreatic cancer mouse model. Neoplastic pancreatic tissue regions, which were histologically indistinguishable from one another, were observed to be metabolically different. We demonstrate the use of the proposed methods to better understand tumor heterogeneity and the tumor microenvironment by transferring machine learning results freely between the two modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bao完成签到 ,获得积分10
2秒前
王天一完成签到,获得积分10
2秒前
jixi66完成签到,获得积分10
2秒前
许愿完成签到 ,获得积分10
3秒前
无为完成签到 ,获得积分10
4秒前
jjx1005完成签到 ,获得积分10
6秒前
自信鑫鹏完成签到,获得积分10
7秒前
搜集达人应助胖飞飞采纳,获得10
9秒前
9秒前
202483067完成签到 ,获得积分10
10秒前
怡轻肝完成签到,获得积分10
13秒前
乱武发布了新的文献求助30
14秒前
15秒前
压缩完成签到 ,获得积分10
15秒前
16秒前
situ发布了新的文献求助10
18秒前
强砸完成签到,获得积分10
18秒前
薇薇完成签到,获得积分10
21秒前
姜小猪发布了新的文献求助10
21秒前
SciGPT应助笨笨梦松采纳,获得10
21秒前
科研小白完成签到,获得积分10
22秒前
传奇3应助Synan采纳,获得10
23秒前
娇娇大王完成签到,获得积分10
25秒前
黄青青完成签到,获得积分10
25秒前
jin驳回了Orange应助
25秒前
27秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得30
28秒前
打打应助科研通管家采纳,获得10
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
Sun_Chen完成签到,获得积分10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
陈预立完成签到,获得积分10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得30
28秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845700
求助须知:如何正确求助?哪些是违规求助? 3387942
关于积分的说明 10551187
捐赠科研通 3108596
什么是DOI,文献DOI怎么找? 1712953
邀请新用户注册赠送积分活动 824550
科研通“疑难数据库(出版商)”最低求助积分说明 774891