亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage

材料科学 电化学 锂(药物) 阴极 扩散 离子 储能 化学工程 阳极 结构稳定性 纳米技术 电极 冶金 化学 热力学 物理化学 物理 工程类 内分泌学 功率(物理) 有机化学 医学 结构工程
作者
Jianing Liang,Yun Lu,Jie Wang,Xupo Liu,Ke Chen,Weihao Ji,Ye Zhu,Deli Wang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:47: 188-195 被引量:35
标识
DOI:10.1016/j.jechem.2019.12.009
摘要

Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost. However, nickel-rich layered oxides also have exposed several defects for commercial application, such as uncontrollable ordered layered structure, which leads to higher energy barrier for Li+ diffusion. In addition, suffering from structural mutability, the bulk nickel-rich cathode materials likely trigger overall volumetric variation and intergranular cracks, thus obstructing the lithium ion diffusion path and shortening the service life of the whole device. Herein, we report well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage. The as-fabricated LiNi0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1, remarkable energy density of 866 Wh kg–1, rapid Li ion diffusion coefficient (10–9 cm2 s–1) and low voltage decay. The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles, which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance. This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荼黎应助李雅琪采纳,获得30
3秒前
Yuan完成签到 ,获得积分10
11秒前
15秒前
shimly0101xx发布了新的文献求助10
19秒前
19秒前
开放道天发布了新的文献求助10
25秒前
31秒前
MchemG应助科研通管家采纳,获得200
35秒前
35秒前
39秒前
59秒前
1分钟前
1分钟前
1分钟前
YCCC完成签到,获得积分10
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
晨云完成签到,获得积分10
1分钟前
1分钟前
耿耿完成签到,获得积分10
1分钟前
1分钟前
耿耿发布了新的文献求助10
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
YCCC发布了新的文献求助10
2分钟前
2分钟前
ok完成签到,获得积分10
2分钟前
小湛湛完成签到 ,获得积分10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
希望天下0贩的0应助QQWQEQRQ采纳,获得10
2分钟前
Lucas应助sss采纳,获得10
2分钟前
2分钟前
2分钟前
QQWQEQRQ发布了新的文献求助10
3分钟前
sss完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617027
求助须知:如何正确求助?哪些是违规求助? 4701398
关于积分的说明 14913514
捐赠科研通 4748350
什么是DOI,文献DOI怎么找? 2549251
邀请新用户注册赠送积分活动 1512325
关于科研通互助平台的介绍 1474080